Skip to main content
Log in

Determination of Thermal Properties in the Frequency Domain Based on a Non-integer Model: Application to a Sample of Concrete

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A technique for determining thermophysical properties is proposed and applied to a sample of concrete by taking advantage of pseudo-random signals. Data are treated in the frequency domain. A new approach is developed for estimating the thermal impedance based on the formalism of non-integer order models. An experimental setup consisting of a heat flux and temperature sensor arranged in contact with a material assuming a semi-infinite boundary condition is studied. The theoretical expression for such a thermal impedance takes into account the thermal capacity of the sensor and the contact resistance and emphasizes fractional orders in the behavior model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Thermal diffusivity (m2 · s−1)

b :

Thermal effusivity (J · m−2 · s−1/2 · K−1)

\({\bar{{b}}}\) :

Average value of the thermal effusivity

c :

Specific heat capacity (J · kg−1 · K−1)

C :

Thermal capacity of the system (J · m−2 · K−1)

C f :

Fluxmeter capacity (J · m−2 · K−1)

C v :

Coefficient of variation

D:

Differentiation operator

f :

Frequency (Hz)

h :

Sampling period (s)

j :

Complex variable

:

Thickness of material (M)

\({n_{\alpha _I} ,n_{\beta _J}}\) :

Derivative orders

p :

Laplace variable

p i :

Theoretical impedance parameter

\({{S}_{p_{i}}}\) :

Impedance sensitivity function to parameter p i

R :

Thermal resistance of the system (K · m2 · W−1)

R c :

Contact resistance (K · m2 · W−1)

R f :

Fluxmeter resistance (K · m2 · W−1)

t :

Time (s)

T :

Temperature (K)

Z e :

Thermal input impedance (K · m2 · W−1)

Z c :

Characteristic thermal impedance (K · m2 · W−1)

Z th :

Theoretical Impedance (K · m2 · W−1)

λ:

Thermal conductivity (W · m−1 · K−1)

θ :

Temperature (°C)

ρ :

Density (kg · m−3)

ρc :

Volumetric heat capacity (J · m−3 · K−1)

\({\phi}\) :

Heat flux (W · m−2)

σ :

Standard deviation

α i , β j :

Differential model parameters

References

  1. Defer D., Antczak E., Duthoit B.: Meas. Sci. Technol. 12, 1 (2001)

    Article  Google Scholar 

  2. Oustaloup A.: La dérivée non entière: théorie, synthèse et applications. Hermès, Paris (1995)

    Google Scholar 

  3. Delacre E., Defer D., Antczak E., Duthoit B.: High Temps. - High Press. 33, 337 (2001)

    Article  Google Scholar 

  4. Short A., Kinniburg W.: Lightweight Concrete, pp. 113. Galliard, Great Yormouth, UK (1978)

    Google Scholar 

  5. Defer D., Antczak E., Duthoit B.: Meas. Sci. Technol. 9, 496 (1998)

    Article  ADS  Google Scholar 

  6. Hérin P., Théry P.: Meas. Sci. Technol. 3, 158 (1993)

    Google Scholar 

  7. Degiovanni A.: Int. J. Heat Mass Transfer 31, 553 (1988)

    Article  Google Scholar 

  8. Battaglia J.L., Le Lay L., Batsale J.C., Oustaloup A., Cois O.: Int. J. Therm. Sci. 39, 374 (2000)

    Article  Google Scholar 

  9. D. Leclercq, Caractérisation des transferts thermiques par analyse de la réponse en fréquence (Ph.D. Thesis, Lille, 1982)

  10. L. Other-Duthoit, Application des méthodes de la théorie des systèmes à la simulation de l’évolution des flux thermiques sur les faces d’entrée et de sortie d’une paroi multicouche (Ph.D. Thesis, Lille, 1985)

  11. Lagarias J.C., Reeds J.A., Wright J.H., Wright P.E.: Soc. Indust. Appl. Math. 9, 112 (1998)

    MATH  MathSciNet  Google Scholar 

  12. R. Pintelon, J. Schoukens, System Identification: A Frequency Domain Approach (IEEE Press, Piscataway, New Jersey, 2001), ISBN 0-7803-6000-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Defer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Defer, D., Chauchois, A., Antczak, E. et al. Determination of Thermal Properties in the Frequency Domain Based on a Non-integer Model: Application to a Sample of Concrete. Int J Thermophys 30, 1025–1039 (2009). https://doi.org/10.1007/s10765-009-0598-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0598-y

Keywords

Navigation