Skip to main content
Log in

A Study of the Flow through Capillary Tubes Tuned for a Cooling Circuit with Saturated Fluorocarbon Refrigerants

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Capillary tube expansion devices are widely used in refrigeration equipment; nevertheless, the mechanism of the flow is still not fully described and understood, so the experimental verification of most predictions is still necessary. A modified numerical model of capillary flow has been developed both for standard refrigerants and with emphasis for saturated fluorocarbon (C2F2n+2) refrigerants. These refrigerants have several unique properties (high dielectric performance, chemical stability, and radiation resistance). Therefore, they can be used in some special applications, where other common fluids cannot be applied. The main aim of this study was to prepare a practical capillary flow model, which would improve the procedure of predicting the behavior of capillary tubes for cooling circuits of particle detectors being built at the international CERN laboratory in Geneva. The generated numerical model was verified through available data from the literature and also via measurements performed in a real cooling circuit with pure, oil-free octafluoropropane (C3F8) refrigerant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c p :

Specific heat (J · kg−1 · K−1)

e :

Specific energy (e = h + v 2/2 = E + p/ρ) (J · kg−1)

f :

Friction factor

h :

Enthalpy (J · kg−1)

\(\mathop m\limits^{\bullet}\) :

Mass flow rate (kg · s−1)

p :

Pressure (Pa)

q :

Heat flux (W · m−2)

s :

Entropy (J · kg−1 · K−1)

t :

Time (s)

v :

Velocity (m · s−1)

z :

Axial coordinate (m)

A :

Capillary inner cross section (m2)

E :

Energy (sum of internal energy and kinetic energy) (J · kg−1)

ID :

Inner diameter (m)

K z :

Body forces (gravity) (m · s−2)

L :

Capillary tube length (m)

P :

Capillary inner perimeter (m)

Re :

Reynolds number

S :

Slip ratio

T :

Temperature (K)

α :

Void fraction

δ :

Capillary wall roughness (m)

ρ :

Density (kg · m−3)

τ :

Shear stress (Pa)

x :

Vapor quality

Δz :

Control volume length (m)

ΦLO :

Two-phase multiplier

amb:

Ambient

crit:

Critical flow conditions

dis:

Discharge—conditions at capillary outlet

evap:

Evaporation

i :

Control volume inlet (point i of the computational grid)

i + 1:

Control volume outlet (point i + 1 of the computational grid)

in:

Capillary inlet

sat:

Saturation properties

TP:

Two-phase

w:

Condition at the capillary inner wall

g:

Vapor phase

l:

Liquid phase

–:

Arithmetical average over a control volume

~:

Integral average over a control volume

References

  1. Mikol E.P. (1963) J. ASHRAE 75–86

  2. Li R.Y., Lin S., Chen Z.Y., Chen Z.H. (1990) Int. J. Refrig. 13, 181

    Article  Google Scholar 

  3. Chen Z.H., Li R.Y., Lin S., Chen Z.Y. (1990) ASHRAE Trans. 96, 550

    Google Scholar 

  4. Lackme C. (1979) Int. J. Multiphase Flow 5, 131

    Article  MATH  Google Scholar 

  5. Koizumi H., Yokoyama K. (1980) ASHRAE Trans. 86, 19

    Google Scholar 

  6. Bansal P.K., Rupasinghe A.S. (1998) Appl. Therm. Eng. 18, 207

    Article  Google Scholar 

  7. Kritsadathikarn P., Songnetichaovalit T., Lokathada N. (2002) Res. Article, Sci. Asia 28, 71

    Google Scholar 

  8. Sami S.M., Tribes C. (1998) Appl. Therm. Eng. 18, 491

    Article  Google Scholar 

  9. Wong T.N., Ooi K.T. (1996) Appl. Therm. Eng. 16, 625

    Article  Google Scholar 

  10. Z.L. Miropolskiy, R.I. Shneyerova, A.I. Karamysheva, in International Heat Transfer Conference, vol. 5 (Paris, 1970), Paper B 4.7

  11. Lin S., Kwok C.C.K., Li R.Y., Chen Z.H., Chen Z.Y. (1991) Int. J. Multiphase Flow 17, 95

    Article  MATH  Google Scholar 

  12. Wongwises S., Chan P. (2000) Int. Comm. Heat Transfer 27, 343

    Article  Google Scholar 

  13. Bansal P.K., Wang G. (2004) Appl. Therm. Eng. 24, 851

    Article  Google Scholar 

  14. Sinpiboon J., Wongwises S. (2002) Appl. Therm. Eng. 22, 2015

    Article  Google Scholar 

  15. Escanes F., Pérez-Segarra C.D., Oliva A. (1995) Int. J. Refrig. 18, 113

    Article  Google Scholar 

  16. Gnielinski V. (1976) Int. Chem. Eng. 16, 359

    Google Scholar 

  17. García-Valladares O., Pérez-Segarra C.D., Oliva A. (2002) Appl. Therm. Eng. 22, 173

    Article  Google Scholar 

  18. Xu B., Bansal P.K. (2002) Appl. Therm. Eng. 22, 1801

    Article  Google Scholar 

  19. Yilmaz T., Ünal S. (1996) ASME J. Fluids Eng. 118, 150

    Google Scholar 

  20. Zhang C., Ding G. (2004) Int. J. Refrig. 27, 17

    Article  Google Scholar 

  21. Melo C., Ferreira R.T.S., Boabaid Neto C., Concalves J.M. (1999) Appl. Therm. Eng. 19, 669

    Article  Google Scholar 

  22. M.O. McLinden, S.A. Klein, E.W. Lemmon, A.P. Peskin, REFPROP Version 6.0 (National Institute of Standards and Technology, Gaithersburg, Maryland, 2000)

  23. Vacek V., Hallewell G., Lindsay S. (2001) Fluid Phase Equilib. 185, 305

    Article  Google Scholar 

  24. Vacek V., Hallewell G., Ilie S., Lindsay S. (2000) Fluid Phase Equilib. 174, 191

    Article  Google Scholar 

  25. S.D. Chang, S.T. Ro, in 1996 International Refrigeration Conference, vol. 83 (Purdue Univ., Lafayette, Indiana, 1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vaclav Vacek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vacek, V., Vinš, V. A Study of the Flow through Capillary Tubes Tuned for a Cooling Circuit with Saturated Fluorocarbon Refrigerants. Int J Thermophys 28, 1490–1508 (2007). https://doi.org/10.1007/s10765-007-0294-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0294-8

Keywords

Navigation