Skip to main content
Log in

Development and Characterization of Low-Emitting Ceramics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The infrared-optical properties of ceramics are correlated with the complex index of refraction of the material and the structure of the ceramic. By changing these parameters, the infrared-optical properties can be changed over a relatively wide range. The correlation of the structural properties (like the porosity or the pore sizes) and the material properties (such as the complex index of refraction on the one hand and the infrared-optical properties such as emittance on the other) are described by a solution of the equation of radiative transfer and the Mie-theory. Within this work, low-emitting ceramics, which have significantly lower emittances than conventional ceramics, were prepared by optimizing their composition and structure. The spectral emittance of these ceramics was measured, and a total emittance dependent on temperature was calculated from the spectral emittance. As a result, one obtains ceramics which have a total emittance of 0.2 at a temperature of 1,100 K. In comparison to conventional ceramics with a typical total emittance of 0.8 at 1,100 K, the use of such low-e ceramics leads to a reduction in heat transfer of about 70% via thermal radiation. The results of our calculations were compared with experimental data to validate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

μ :

Direction cosine

τ :

Optical depth

τ 0 :

Optical thickness

Π:

Porosity

θ :

Scattering angle (rad)

ε :

Total emittance

ε λ :

Spectral emittance

λ:

Wavelength (m)

λChr :

Christiansen wavelength (m)

Ω, Ω′:

Solid angle (sr)

ω 0 :

Albedo

ρ :

Powder density (kg m−3)

ρ t.d. :

Theoretical density (kg m−3)

σ g :

Geometric mean standard deviation

ψ j , ζ j :

Ricatti–Bessel functions

ρ p :

Internal reflectance

A :

Absorption coefficient (m−1)

a i :

Weight factors

a j , b j :

Development coefficients

C abs :

Absorption cross-section (m2)

C ext :

Extinction cross-section (m2)

C sca :

Scattering cross-section (m2)

d :

Thickness (m)

D :

Diameter (m)

D M :

Modal value (m)

E :

Extinction coefficient (m−1)

F :

Radiative flux (W m−1 m−2)

g :

Anisotropy factor

I λ :

Spectral intensity (W m−1 m−2 sr−1)

I b,λ:

Spectral intensity of a blackbody (W m−1 m−2 sr−1)

J :

Source term (W m−1 m−2 sr−1)

k :

Imaginary part of the complex refractive index

m :

Complex refractive index

m particle :

Mass of a powder particle (kg)

m total :

Sample mass (kg)

n :

Real part of the complex refractive index

N :

Number of particles

p :

Phase function

Q abs :

Efficiency for absorption

Q ext :

Efficiency for extinction

Q sca :

Efficiency for scattering

R dh :

Directional-hemispherical reflectance

R i :

Angular-dependent reflectance

\(\overline{R}_{\rm i}\) :

Mean internal reflectance

R p :

Reflection of perpendicular beam onto surface

\({\mathcal{S}}\) :

Scattering coefficient (m−1)

T :

Temperature (K)

T dh :

Directional-hemispherical transmittance

t s :

Sintering time (s)

T s :

Sintering temperature (K)

V :

Sample volume (m3)

V particle :

Volume of a powder particle (m3)

x :

Length (m)

z :

Size parameter

* :

Effective

References

  1. A. Knote, H.G. Krüger, H. Kern, J. Manara, Presented at Thüringer Werkstofftag 2004 (2004)

  2. J. Manara, Infrarot-optischer Strahlungstransport zur Analyse der Struktur und der Wärmeleitfähigkeit von Keramiken für Hochtemperaturanwendungen (Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians- Universität Würzburg, 2001)

  3. Manara J., Caps R., Raether F., Fricke J. (1999). Opt. Commun. 168: 237

    Article  ADS  Google Scholar 

  4. Manara J., Caps R., Fricke J. (2005). Int. J. Thermophys. 26: 531

    Article  Google Scholar 

  5. R. Siegel, J.R. Howell, Thermal Radiation – Heat Transfer (McGraw-Hill, Washington, 1981)

  6. Burger T., Kuhn J., Caps R., Fricke J. (1997). Appl. Spectrosc. 51: 309

    Article  ADS  Google Scholar 

  7. McKellar B.H.J., Box M.A. (1981). J. Atmos. Sci. 38: 1063

    Article  ADS  MathSciNet  Google Scholar 

  8. Kaganer M.G. (1969). Opt. Spectrosc 26: 443

    Google Scholar 

  9. Chandrasekhar S. (1960). Radiative Transfer. Dover Pubs., New York

    Google Scholar 

  10. Mie G. (1908). Ann. Phys 25: 377

    Article  Google Scholar 

  11. Bohren C.F., Huffmann D.R. (1983). Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York

    Google Scholar 

  12. Kerker M. (1969). The Scattering of Light and Other Electromagnetic Radiation. Academic Press, Orlando

    Google Scholar 

  13. van de Hulst H.C. (1981). Light Scattering by Small Particles. Dover Pubs., New York

    Google Scholar 

  14. Berendt G., Weimar E. (1990). Mathematik für Physiker, Band 2: Funktionentheorie, gewöhnliche und partielle Differentialgleichungen. VCH Verlagsgesellschaft mbH, Weinheim

    MATH  Google Scholar 

  15. R. Caps, Strahlungsströme in evakuierten thermischen Superisolationen (Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg, 1985)

  16. Hottel H.C., Sarofim A.F. (1967). Radiative Transfer. McGraw-Hill, New York

    Google Scholar 

  17. J. Manara, R. Brandt, J. Kuhn, J. Fricke, T. Krell, U. Schulz, M. Peters, W.A. Kaysser, High Temp. – High Press. 32, 361 (2000)

  18. Burger T., Fricke J., Kuhn J. (1998). Near Infrared Spectrosc. 6: 33

    Google Scholar 

  19. Palik E.D. (1998). Handbook of Optical Constants of Solids. Academic Press, San Diego

    Google Scholar 

  20. Tanaka H., Sawai S., Morimoto K., Hisano K. (2001). J. Therm. Anal. Calorim. 64: 867

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Manara.

Additional information

Paper presented at the Seventh European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manara, J., Reidinger, M., Korder, S. et al. Development and Characterization of Low-Emitting Ceramics. Int J Thermophys 28, 1628–1645 (2007). https://doi.org/10.1007/s10765-007-0239-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0239-2

Keywords

Navigation