Skip to main content

Advertisement

Log in

Current Status of Transport Properties of Hydrogen

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This article contains a survey of experimental data for the thermal conductivity and viscosity of hydrogen, which are needed for many applications in system analysis and design. It includes an analysis of the current standard models for thermal conductivity and viscosity of normal hydrogen and parahydrogen, which are based on measurement and correlation work done before the mid1980s. Properties calculated with these models are analyzed and compared to all available experimental data for normal hydrogen and parahydrogen. Finally, recommendations for future work, including new experimental measurements to enable the development of improved transport property formulations for hydrogen, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vargaftik N.B., Vinogradov Y.K., Yargin V.S. (1996). Handbook of Physical Properties of Liquids and Gases. Begell House, New York

    Google Scholar 

  2. Stephan K., Lucas K. (1979). Viscosity of Dense Fluids. Plenum Press, New York and London

    Google Scholar 

  3. Assael M.J., Mixafendi S., Wakeham W.A. (1986). Phys. Chem. Ref. Data 15: 1315

    Article  ADS  Google Scholar 

  4. Touloukian Y.S., Liley P.E., Saxena S.C.  (1970). Viscosity: Nonmetallic Liquids and Gases Thermophysical Properties of Matter. IFI/Plenum, Washington, D.C.

    Google Scholar 

  5. Touloukian Y.S., Liley P.E., Saxena S.C. (1970). Thermal Conductivity Nonmetallic Liquids and Gases Thermophysical Properties of Matter. IFI/Plenum, Washington, D.C.

    Google Scholar 

  6. E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Reference Fluid Thermodynamic and Transport Properties Database, NIST23 (REFPROP), Version 8.0. Standard Reference Data, National Institute of Standards and Technology, Gaithersburg, Maryland (2007)

  7. Thermophysical Properties of Hydrogen. http://www.boulder.nist.gov/div838/Hydrogen/Publications/Publicationsmain.htm

  8. E.W. Lemmon, A.P. Peskin, M.O. McLinden, D.G. Friend, NIST Thermodynamic and Transport Properties of Pure Fluids, NIST12, Version 5.0. Standard Reference Data, National Institute of Standards and Technology, Gaithersburg, Maryland (2000)

  9. Diller D.E. (1965). J. Chem. Phys. 42: 2089

    Article  ADS  Google Scholar 

  10. Roder H.M. (1984). Int. J. Thermophys 5: 323

    Article  ADS  Google Scholar 

  11. R.T. Jacobsen, J.W. Leachman, S.G. Penoncello, E.W. Lemmon, Int. J. Thermophys. (in press)

  12. Stewart A.T., Squires G.L. (1955). J. Sci. Instrum. 32: 26

    Article  ADS  Google Scholar 

  13. R.D. McCarty, J. Hord, H.M. Roder, Selected Properties of Hydrogen (Engineering Design Data), Natl. Bur. Stand. (U.S.) Monograph 168, NBS, (1981)

  14. Zhou D., Ihas G.G., Sullivan N.S. (2004). J. Low Temp. Phys. 134: 401

    Article  ADS  Google Scholar 

  15. H.M. Roder, Experimental Thermal Conductivity Values for Hydrogen, Methane, Ethane and Propane, Natl. Bur. Stand. (U.S.) Interagency Report 84-3006, (1984)

  16. Assael M.J., Wakeham W.A. (1981). J. Chem. Soc., Faraday Trans. I 77: 697

    Article  Google Scholar 

  17. Blais N.C., Mann J.B. (1960). J. Chem. Phys. 32: 1459

    Article  ADS  Google Scholar 

  18. Chaikin A.M., Markevich A.M. (1958). Zh. Fiz. Khim. 32: 120

    Google Scholar 

  19. Clerc H., Tufeu R., Le Neindre B. (1977). Proc. Symp. Thermophys. Prop. 7: 717

    Google Scholar 

  20. Clifford A.A., Gray P., Johns A.I., Scott A.C., Watson J.T.R. (1981). J. Chem. Soc., Faraday Trans. 1(77): 2679

    Google Scholar 

  21. Clifford A.A., Kestin J., Wakeham W.A. (1980). Ber. Bunsenges. Phys. Chem. 84: 9

    Google Scholar 

  22. Clifford A.A., Colling L., Dickinson E., Gray P. (1975). J. Chem. Soc. Faraday Trans. I 71: 1962

    Article  Google Scholar 

  23. Dickins B.G. (1934). Proc. R. Soc. London, Ser. A 143: 517

    Article  ADS  Google Scholar 

  24. Eucken A. (1911). Phys. Z. 12: 1101

    Google Scholar 

  25. Eucken A. (1913). Phys. Z. 14: 324

    Google Scholar 

  26. Geier H., Schaefer K. (1961). Allg. Wärmetech. 10: 70

    Google Scholar 

  27. Golubev I.F., Kalsina M.V. (1965). Thermal Conductivity of Nitrogen and Hydrogen at Temperatures from 20 to −195°C and Pressures from 1 to 500 atm. Los Alamos Sci. Lab., Los Alamos, New Mexico

    Google Scholar 

  28. Gregory H.S. (1935). Proc. R. Soc. London, Ser. A 149: 35

    Article  ADS  Google Scholar 

  29. Gregory H., Archer C.T. (1926). Proc. R. Soc. London, Ser. A 110: 91

    Article  ADS  Google Scholar 

  30. Hamrin C.E.J., Thodos G. (1966). Physica 32: 918

    Article  ADS  Google Scholar 

  31. Hemminger W. (1987). Int. J. Thermophys. 8: 317

    Article  Google Scholar 

  32. Johnston H.L., Grilly E.R. (1946). J. Chem. Phys. 14: 233

    Article  ADS  Google Scholar 

  33. Kannuluik W.G., Martin L.H. (1934). Proc. R. Soc. London, Ser. A 144: 496

    Article  ADS  Google Scholar 

  34. Keyes F.G. (1954). Trans. ASME 76: 809

    Google Scholar 

  35. Lenoir J.M., Comings E.W. (1951). Chem. Eng. Prog. 47: 223

    Google Scholar 

  36. Powers R.W., Mattox R.W., Johnston H.L. (1954). J. Am. Chem. Soc. 76: 5972

    Article  Google Scholar 

  37. Roder H.M., Diller D.E. (1970). J. Chem. Phys. 52: 5928

    Article  ADS  Google Scholar 

  38. Salceanu C., Bojin S. (1956). C. R. Hebd. Seances Acad. Sci. 243: 237

    Google Scholar 

  39. Saxena S.C.  and Saxena V.K. (1970). J. Phys. A: Gen. Phys. 3: 309

    Article  ADS  Google Scholar 

  40. Schneider E. (1926). Ann. Phys. (Leipzig) 79: 177

    ADS  Google Scholar 

  41. Sherif I.I. (1965). Appl. Sci. Res., Sect. A 14: 353

    Article  Google Scholar 

  42. Spencer-Gregory H., Dock E.H. (1938). Phil. Mag. 25: 129

    Google Scholar 

  43. Srivistava B.N., Srivistava R.C. (1959). J. Chem. Phys. 10: 1200

    Article  ADS  Google Scholar 

  44. Stolyarov E.A., Ipatjer V.V., Theodorowitsch V.P. (1950). Zh. Fiz. Khim. 24: 166

    Google Scholar 

  45. D.L. Timrot, A.S. Umanskii, V.V. Koroleva, Teplofiz. Svoistva Zhidk. Gazov Vys. Temp. Plazmy, Tr. Vses. Conf. 1966 (1969)

  46. J.B. Ubbink, Commun. Kamerlingh Onnes Lab. Univ. Leiden 1 (1948)

  47. van Dael W., Cauwenbergh H. (1968). Physica 40: 165

    Article  ADS  Google Scholar 

  48. Vargaftik N.B., Perfenov I.D. (1938). Zh. Eksp. Teor. Fiz. 8: 189

    Google Scholar 

  49. Adzumi H. (1937). Bull. Chem. Soc. Jpn. 12: 199

    Article  Google Scholar 

  50. Barua A.K., Afzal M., Flynn G.P., Ross J. (1964). J. Chem. Phys. 41: 374

    Article  ADS  Google Scholar 

  51. Boyd J.H.J. (1930). Phys. Rev. 35: 1284

    Article  ADS  Google Scholar 

  52. Breitenbach P. (1901). Ann. Phys. (Leipzig) 5: 166

    ADS  Google Scholar 

  53. Buddenberg J.W., Wilke C.R. (1951). J. Phys. Colloid Chem. 55: 1491

    Article  Google Scholar 

  54. Chuang S.-Y., Chappelear P.S., Kobayashi R. (1976). J. Chem. Eng. Data 21: 403

    Article  Google Scholar 

  55. Clifford A.A., Kestin J., Wakeham W.A. (1981). Ber. Bunsenges. Phys. Chem. 85: 385

    Google Scholar 

  56. Coremans J.M.J., Beenakker J.J.M., van Itterbeek A., Zandbergen P. (1958). Annexe Bull. Inst. Int. Froid 1958–1: 289

    Google Scholar 

  57. R.O. Gibson, The viscosity of gases at high pressures. Ph. D. Thesis, University of Amsterdam (1933)

  58. I.F. Golubev, V.A. Petrov (as given in Golubev, I.F. 1970), Viscosity of Gases and Gas Mixtures. A Handbook. Israel Program Sci. Transl. (1953)

  59. Golubev I.F., Shepeleva R.I. (1966). Gazov. Promst. 11: 54

    Google Scholar 

  60. Gracki J.A., Flynn G.P., Ross J. (1969). J. Chem. Phys. 51: 3856

    Article  ADS  Google Scholar 

  61. Guevara F.A., McInteer B.B., Wageman W.E. (1969). Phys. Fluids 12: 2493

    Article  ADS  Google Scholar 

  62. Günther P. (1924). Z. phys. Chemie, Leipzig 110: 624

    Google Scholar 

  63. Ishida Y. (1923). Phys. Rev. 21: 550

    Article  ADS  Google Scholar 

  64. Johns H.E. (1939). Can. J. Res. Sect. A 17: 221

    Google Scholar 

  65. Johnston H.L., McCloskey K.E. (1940). J. Phys. Chem. 44: 1038

    Article  Google Scholar 

  66. H. Kamerlingh Onnes, C. Dorsman, S. Weber, Commun. Phys. Lab. Univ. Leiden 1 (1913)

  67. W.H. Keesom, P.H. Keesom, Commun. Kamerlingh Onnes Lab. Univ. Leiden 1 (1940)

  68. W.H. Keesom, G.E. MacWood, Commun. Kamerlingh Onnes Lab. Univ. Leiden 1 (1938)

  69. Kestin J., Leidenfrost W. (1959). Physica (Amsterdam) 25: 1033

    Article  ADS  Google Scholar 

  70. J. Kestin, A. Nagashima, The Viscosity of the Isotopes of Hydrogen and Their Intermolecular Force Potentials. Tech. Report BRN-11-P, Proj. Squid (1963)

  71. Kestin J., Pilarczyk K. (1954). Trans. ASME 76: 987

    Google Scholar 

  72. Kestin J., Wang H.E. (1958). Trans. ASME 80: 11

    Google Scholar 

  73. Kestin J., Yata J. (1968). J. Chem. Phys. 49: 4780

    Article  ADS  Google Scholar 

  74. Kestin J., Ro S.T., Wakeham W.A. (1971). Trans. Faraday Soc. 67: 2308

    Article  Google Scholar 

  75. Klemenc A., Remi W. (1924). Sitzungsber. Acad. Wiss. Wien, Math-Naturwiss. Kl 44: 307

    Google Scholar 

  76. Kompaneets V.Y. (1953). Sb. Nauchn. Rab., Leningr. Inst. Mekh. Sel. Khoz. 9: 113

    Google Scholar 

  77. Kuss E. (1952). Z. Angew. Phys. 4: 203

    Google Scholar 

  78. Lukin V.I., Ivakin B.A., Suetin P.E. (1983). Sov. Phys. Tech. Phys. 28: 597

    Google Scholar 

  79. Mal’tsev V.A., Nerushev O.A., Novopashin S.A., Rachenko V.V., Licht V.V., Miller W.E., Perekh V.V. (2004). J. Chem. Eng. Data 49: 684

    Article  Google Scholar 

  80. Menabde N.E. (1965). Sov. At. Energy (Engl. Transl.) 19: 1421

    Article  Google Scholar 

  81. Michels A., Schipper A.C.J., Rintoul W.H. (1953). Physica (Amsterdam) 19: 1011

    Article  ADS  Google Scholar 

  82. Nabizadeh H., Mayinger F. (1999). High Temp.—High Press. 31: 601

    Article  Google Scholar 

  83. A.O. Rietveld, A. van Itterbeek, Commun. Kamerlingh Onnes Lab. Univ. Leiden 1, (1957)

  84. A.O. Rietveld, A. van Itterbeek, C.A. Velds, Commun. Kamerlingh Onnes Lab. Univ. Leiden 1, (1959)

  85. Rudenko N.S., Konareva V.G. (1963). Russ. J. Phys. Chem. (Engl. Transl.) 37: 1493

    Google Scholar 

  86. Rudenko N.S., Slyusar V.P. (1968). Ukr. Fiz. Zh. 13: 917

    Google Scholar 

  87. Sutherland B.P., Maass O. (1932). Can. J. Res. 6: 428

    Google Scholar 

  88. Trautz M., Baumann P.B. (1929). Ann. Phys. (Leipzig) 2: 733

    ADS  Google Scholar 

  89. Trautz M., Binkele H.E. (1930). Ann. Phys. (Leipzig) 5: 561

    ADS  Google Scholar 

  90. Trautz M., Heberling R. (1931). Ann. Phys. (Leipzig) 10: 155

    ADS  Google Scholar 

  91. Trautz M., Kurz F. (1931). Ann. Phys. (Leipzig) 9: 981

    ADS  Google Scholar 

  92. Trautz M., Ludewigs W. (1929). Ann. Phys. (Leipzig) 3: 409

    ADS  Google Scholar 

  93. Trautz M., Melster A. (1930). Ann. Phys. (Leipzig) 7: 409

    ADS  Google Scholar 

  94. Trautz M., Sorg K.G. (1931). Ann. Phys. (Leipzig) 10: 81

    ADS  Google Scholar 

  95. Trautz M., Stauf F.W. (1929). Ann. Phys. (Leipzig) 2: 737

    ADS  Google Scholar 

  96. Trautz M., Zimmermann H. (1935). Ann. Phys. (Leipzig) 22: 189

    Google Scholar 

  97. Trautz M., Zink R. (1930). Ann. Phys. (Leipzig) 7: 427

    ADS  Google Scholar 

  98. Tsederberg N.V., Popov V.N., Andreev I.I. (1965). Teploenergetika 12: 84

    Google Scholar 

  99. Van A.B., Cleave Maass O. (1935). Can. J. Res. 12: 57

    Google Scholar 

  100. van Itterbeek A., Claes A. (1938). Physica (Amsterdam) 5: 938

    Article  ADS  Google Scholar 

  101. van Itterbeek A., Claes A. (1938). Nature (London) 142: 793

    ADS  Google Scholar 

  102. van Itterbeek A., van Paemel O. (1941). Physica (Amsterdam) 8: 133

    Article  ADS  Google Scholar 

  103. van Itterbeek A., van Paemel O. (1940). Physica (Amsterdam) 7: 273

    Article  ADS  Google Scholar 

  104. van Itterbeek A., van Paemel O. (1940). Physica (Amsterdam) 7: 265

    Article  ADS  Google Scholar 

  105. J.E. Verschaffelt, C. Nicaise, Commun. Phys. Lab. Univ. Leiden 66, (1917)

  106. Vogel H. (1914). Ann. Phys. (Leipzig) 43: 1235

    Google Scholar 

  107. Wobser R., Mueller F. (1941). Kolloid-Beih. 52: 165

    Google Scholar 

  108. Yen K.-L. (1919). Phil. Mag. 38: 582

    Google Scholar 

  109. Dwyer R.F., Cook G.A., Berwaldt O.E. (1966). J. Chem. Eng. Data 11: 351

    Article  Google Scholar 

  110. U.S. Department of Energy (DOE), Energy Efficiency and Renewable Energy, <http://www.eere.gov/hydrogenandfuelcells/storage/hydrogen_storage.html> (last accessed 6 June 2006)

  111. U.S. Department of Energy (DOE), Advanced Nuclear Research: Nuclear Hydrogen Initiative, <http://www.ne.doe.gov/hydrogen/hydrogenBG.html> (last updated 29 June 2004)

  112. D.Y. Goswami, S.T. Mirabal, N. Goel, H.A. Ingley, Fuel Cell Sci. Eng. Technol. 61 (2003)

  113. Hanley H.J.M., McCarty R.D., Intemann H. (1970). J. Res. Natl. Bur. Stand., Sect. A 74: 331

    Google Scholar 

  114. Becker E.W., Stehl O. (1952). Phys. Rev. 87: 525

    Article  ADS  Google Scholar 

  115. Becker E.W., Stehl O. (1952). Z. Phys. 133: 615

    Article  ADS  Google Scholar 

  116. Younglove B.A. (1982). J. Phys. Chem. Ref. Data 11: 1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Leachman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leachman, J.W., Jacobsen, R.T., Penoncello, S.G. et al. Current Status of Transport Properties of Hydrogen. Int J Thermophys 28, 773–795 (2007). https://doi.org/10.1007/s10765-007-0229-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0229-4

Keywords

Navigation