International Journal of Thermophysics

, Volume 28, Issue 3, pp 743–757 | Cite as

Thermophysical Properties of a Quaternary Refrigerant Mixture: Comparison of Dynamic Light Scattering Measurements with a Simple Prediction Method

  • Andreas Paul FröbaEmail author
  • Cristina Botero
  • Heiko Kremer
  • Alfred Leipertz


Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of a quaternary refrigerant mixture R-125/143a/32/134a in its liquid phase under saturation conditions. The thermal diffusivity and sound speed have been obtained by light scattering from bulk fluids over a temperature range from about 293 K up to the liquid–vapor critical point. By applying the method of DLS to a liquid–vapor interface, also called surface light scattering (SLS), the saturated liquid kinematic viscosity and surface tension can be determined simultaneously. These properties have been measured from about 243 to 343 K. The results are discussed in comparison with literature data and with a simple prediction method based on the mass-weighted properties of the pure components, expressed as functions of the reduced temperature. Once again, the simple prediction method was shown to be applicable for the calculation of different transport and other thermophysical properties of multicomponent refrigerant mixtures and this with sufficiently high accuracy for technical practice. Moreover, the input data for the simple prediction scheme can be reduced without loss of accuracy by treating binary or ternary mixtures as a subset of the multicomponent mixture.


Dynamic light scattering Kinematic viscosity Prediction Quaternary mixture Refrigerants Sound speed Surface tension Thermal diffusivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Fröba A.P., Will S., Leipertz A. (2001). Int. J. Thermophys. 22, 1349–1368CrossRefGoogle Scholar
  2. Fröba A.P., Leipertz A. (2003). Int. J. Thermophys. 24, 1185–1206CrossRefGoogle Scholar
  3. Fröba A.P., Kremer H., Leipertz A. (2004). Int. J. Thermophys. 25, 1115–1133CrossRefGoogle Scholar
  4. Berne B.J., Pecora R., Dynamic Light Scattering (Robert E. Krieger, Malabar, 1990)Google Scholar
  5. Chu B. (1991). Laser Light Scattering. Academic Press, New YorkGoogle Scholar
  6. Langevin D. (1992) Light Scattering by Liquid Surfaces and Complementary Techniques. Marcel Dekker, New YorkGoogle Scholar
  7. Leipertz A., A.P. Fröba, in Diffusion in Condensed Matter – Methods, Materials, Models, ed. by Heitjans P., J. Kärger (Springer, Berlin, 2005), pp. 579–618Google Scholar
  8. Kraft K., Bestimmung von Schallgeschwindigkeit und Schalldämpfung transparenter Fluide mittels der Dynamischen Lichtstreuung. Dr.-Ing. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (1995)Google Scholar
  9. A.P. Fröba, Simultane Bestimmung von Viskosität und Oberflächenspannung transparenter Fluide mittels Oberflächenlichtstreuung. Dr.-Ing. thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen (2002)Google Scholar
  10. Schmidt J.W., Moldover M.R. (1994). J. Chem. Eng. Data 39, 39–44CrossRefGoogle Scholar
  11. Schmidt J.W., Carrillo-Nava E., Moldover M.R. (1996). Fluid Phase Equilib. 122, 187–206CrossRefGoogle Scholar
  12. Yata J., Hori M., Minamiyama T., in Proc. 11th Jap. Symp. (Thermophys. Props., Tokyo, 1990), pp. 111–114Google Scholar
  13. Fröba A.P., Will S., Leipertz A. (2001). Int. J. Thermophys. 22, 1021–1033CrossRefGoogle Scholar
  14. Fröba A.P., Will S., Leipertz A. (2000). Int. J. Thermophys. 21, 1225–1253CrossRefGoogle Scholar
  15. Kraft K., Leipertz A. (1994). Int. J. Thermophys. 15, 387–399CrossRefGoogle Scholar
  16. Kraft K., Leipertz A., in Proc. Int. Conf. CFCs (The Day After, Padova, 1994), pp. 435–442Google Scholar
  17. Kraft K., Leipertz A. (1996). Fluid Phase Equilib. 125, 245–255CrossRefGoogle Scholar
  18. Kraft K., Lopes M.M., Leipertz A. (1995). Int. J. Thermophys. 16, 423–432CrossRefzbMATHGoogle Scholar
  19. Lemmon E.W., McLinden M.O., Huber M.L., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties – REFPROP, Version 7.0. (National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, Maryland, 2002)Google Scholar
  20. McLinden M.O. (1990). Int. J. Refrig. 13, 149–162CrossRefGoogle Scholar
  21. Weber L.A., Defibaugh D.R. (1996). J. Chem. Eng. Data 41, 1447–1480Google Scholar
  22. Outcalt S.L., McLinden M.O. (1995). Int. J. Thermophys. 16, 79–89CrossRefGoogle Scholar
  23. Tillner-Roth R., Baehr H.D. (1994). J. Phys. Chem. Ref. Data 23, 657–729ADSCrossRefGoogle Scholar
  24. Lemmon E.W., Jacobsen R.T. (2004). J. Phys. Chem. Ref. Data 33, 593–620CrossRefADSGoogle Scholar
  25. Lemmon E.W., Private Communication (National Institute of Standards and Technology, Boulder, Colorado, 2006)Google Scholar
  26. Fröba A.P., Leipertz A. (2003). Int. J. Thermophys. 24, 895–921CrossRefGoogle Scholar
  27. Miqueu C., Broseta D., Satherley J., Mendiboure B., Lachaise J., Graciaa A. (2000). Fluid Phase Equilib. 172, 169–182CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Andreas Paul Fröba
    • 1
    • 2
    Email author
  • Cristina Botero
    • 1
  • Heiko Kremer
    • 2
  • Alfred Leipertz
    • 1
    • 2
  1. 1.Lehrstuhl für Technische Thermodynamik (LTT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.ESYTEC Energie- und Systemtechnik GmbHErlangenGermany

Personalised recommendations