Skip to main content
Log in

Normalized Free Energy and Normalized Entropy Applied to Some Lambda (λ) Transitions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The λ-anomaly occurs for a system that can undergo a boson – fermion thermodynamic equilibrium. It is shown that a λ-transition figure can be interpreted in terms of the normalized Gibbs–Helmholtz equation, the Maxwell–Boltzmann energy distribution function, and properties of the statistics of the relevant species. There are three variations of a “λ-transition” curve. These are: (A) the classical λ curve, (B) a saw-tooth line shape that is characteristic of the Bardeen–Cooper–Schrieffer theory of superconductivity, and (C) a single line δ type figure. The low temperature He-4 transition, and Type II superconductor transitions are typical of the line shape A. Type I superconductors typically have type B line shapes. The line shapes for variations A and C result from classical thermodynamic equilibria. The type B line shape occurs in systems that do not have a classical thermodynamic equilibrium at the superconducting transition. Analysis of type B line shapes provides interesting concepts and data for some low- and high-temperature superconductors. Several applications and physical property consequences of these line shapes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilks J. (1967) The Properties of Liquid and Solid Helium. Clarendon Press, Oxford, p. 3.

    Google Scholar 

  2. P. Love, Physical Chemistry Abstracts, 224th ACS National Meeting (2002), p. 309.

  3. Alexandrov A.S., Ranninger J. (1992) . Solid State Commun. 81:403

    Article  Google Scholar 

  4. R. Baierlein, Thermal Physics (Cambridge, Cambridge, 2001), pp. 33–37.

  5. Stowe K. (1984) Introduction to Statistical Mechanics and Thermodynamics. Wiley, New York, pp. 435–437.

    Google Scholar 

  6. Wilks J. (1967) The Properties of Liquid and Solid Helium. Clarendon Press, Oxford, pp. 293–294.

    Google Scholar 

  7. Schnelle W., Braun E., Broicher H., Weiss H., Geus H., Ruppel S., Galffy M., Braunisch W., Waldorf A., Seidler F., Wohlleben D. (1989) . Physica C 161:123

    Article  ADS  Google Scholar 

  8. de Fontaine D., Fries S.G., Inden G., Miodownik P., Schmid-Fetzer R., Chen S.L. (1995) . Calphad 19:499

    Article  Google Scholar 

  9. Phillips P., Dalidovich D. (2003) . Science 302:243

    Article  ADS  Google Scholar 

  10. Bouquet F., Fisher R.A., Phillips N.E., Hinks D.G., Jorgensen J.D. (2001) . Phys. Rev. Lett. 87:047001

    Article  ADS  Google Scholar 

  11. Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 38.

    Google Scholar 

  12. Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 729.

    Google Scholar 

  13. J. S. Blakemore, Solid State Physics, 2nd Ed. (Cambridge, Cambridge, 1985), pp. 270,271.

  14. Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 734.

    Google Scholar 

  15. Callen H.B. (1962) Thermodynamics. Wiley, New York, p. 88.

    Google Scholar 

  16. R. Baierlein, Thermal Physics (Cambridge, Cambridge, 2001), pp. 200, 201.

  17. Stowe K. (1984) Introduction to Statistical Mechanics and Thermodynamics. Wiley, New York, p. 407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Love.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Love, P. Normalized Free Energy and Normalized Entropy Applied to Some Lambda (λ) Transitions. Int J Thermophys 28, 544–555 (2007). https://doi.org/10.1007/s10765-007-0194-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0194-y

Keywords

Navigation