Skip to main content
Log in

Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The thermal conductivity of UO2+x has been investigated by an equilibrium molecular dynamics (EMD) simulation up to 2000 K using the Born–Mayer–Huggins interatomic potential with the partially ionic model. In the present EMD system with the Green–Kubo method, the thermal conductivity was determined by the auto-correlation functions of energy and charge currents and the cross-coupling term. The thermal conductivity of UO2+x decreased with an increase of x and temperature. Its temperature dependence was relatively small for large x values, which was attributed to phonon scattering by excess oxygens. In addition, the heat capacity was calculated using the phonon-level density deduced by the velocity auto-correlation function for constituent ions. The phonon velocity was also evaluated by the phonon- dispersion relationship. Using these thermal properties obtained by EMD calculations, the effect of excess oxygens on the phonon mean free path was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Olander, Fundamental Aspect of Nuclear Reactor Fuel Elements, TID-26711-P1 (1976).

  2. Sindzingre P., Gillan M.J. (1988). J. Phys. C: Solid State Phys. 21:4017

    Article  ADS  Google Scholar 

  3. Lindan P.L.D. Gillan M.J. (1991). J. Phys.: Condens. Matter. 3:3929

    Article  ADS  Google Scholar 

  4. Motoyama S., Ichikawa Y., Hiwatari Y., Oe A. (1999). Phys. Rev. B 60:292

    Article  ADS  Google Scholar 

  5. Yamada K., Kurosaki K., Uno M., Yamanaka S. (2000). J. Alloys. Comp. 307:10

    Article  Google Scholar 

  6. Arima T., Yamasaki T., Inagaki Y., Idemitsu K. (2005). J. Alloys and Comp. 400:43

    Article  Google Scholar 

  7. Yamada K., Kurosaki K., Uno M., Yamanaka S. (2000). J. Alloys. Comp. 307:1

    Article  Google Scholar 

  8. Kurosaki K., Yamada K., Uno M., Yamanaka S., Yamamoto K., Namekawa T. (2001). J. Nucl. Mater. 294:160

    Article  ADS  Google Scholar 

  9. Arima T., Yamasaki S., Inagaki Y., Idemitsu K. (2006). J. Alloys Comp. 415:43

    Article  Google Scholar 

  10. Hirao K., Kawamura K. (1994) Material Design Using Personal Computer. Shokabo, Tokyo

    Google Scholar 

  11. Inaba H., Sagawa R., Hayashi H., Kawamura K. (1999). Solid State Ionics. 122:95

    Article  Google Scholar 

  12. Hayashi H., Sagawa R., Inaba H., Kawamura K. (2000). Solid State Ionics. 131:281

    Article  Google Scholar 

  13. Willis B.T.M. (1963). Nature. 197:755

    Article  ADS  Google Scholar 

  14. Willis B.T.M. (1964). J. Phys. 25:431

    Google Scholar 

  15. Cordfunke E.H.P., Konings R.J.M. (1990) Thermochemical Data for Reactor Materials and Fission Products. North-Holland, Amsterdam

    Google Scholar 

  16. Grønvold F. (1955). J. Inorg. Nucl. Chem. 1:357

    Article  Google Scholar 

  17. Martin D.G. (1988). J. Nucl. Mater. 152:94

    Article  ADS  Google Scholar 

  18. Sindzingre P., Gillan M.J. (1990). J. Phys.: Condens. Matter. 2:7033

    Article  ADS  Google Scholar 

  19. Galamba N., Nieto de Castro C.A., Ely J.F. (2004). J. Chem. Phys. 120:8676

    Article  ADS  Google Scholar 

  20. Bernu B., Hansen J.P. (1982). Phys. Rev. Lett. 48:1375

    Article  ADS  Google Scholar 

  21. Pierleoni C., Ciccotti G., Bernu B. (1987). Europhys. Lett. 4:1115

    ADS  Google Scholar 

  22. Pierleoni C., Ciccotti G. (1990). J. Phys: Condens. Matter. 2:1315

    Article  ADS  Google Scholar 

  23. Fink J.K. (2000). J. Nucl. Mater. 279:1

    Article  ADS  Google Scholar 

  24. Lucuta P.G., Matzke H., Hastings I.J. (1996). J. Nucl. Mater. 232:166

    Article  ADS  Google Scholar 

  25. Amaya M., Kubo T., Korei Y. (1996). J. Nucl. Sci. Technol. 33:636

    Article  Google Scholar 

  26. Godfrey T.G., Fulkerson W., Kollie T.G., Moore J.P., McElroy D.L. (1965). J. Am. Ceram. Soc. 48:297

    Article  Google Scholar 

  27. Moore J.P., McElroy D.L. (1971). J. Am. Ceram. Soc. 54:40

    Article  Google Scholar 

  28. Kittel C. (1996) Introduction to Solid State Physics, 7th ed. Wiley, New York

    Google Scholar 

  29. SCDAP/RELAP5–3D© CODE MANUAL, Vol. 4: MATPRO – A Library of Materials Properties for Light-Water-Reactor Accident Analysis, INEEL/EXT-02–00589, Rev. 2.2 (Oct. 2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsumi Arima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, S., Arima, T., Idemitsu, K. et al. Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation. Int J Thermophys 28, 661–673 (2007). https://doi.org/10.1007/s10765-007-0170-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0170-6

Keywords

Navigation