Skip to main content
Log in

Isochoric Heat-Capacity Measurements for Pure Methanol in the Near-Critical and Supercritical Regions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Isochoric heat-capacity measurements for pure methanol are presented as a function of temperature at fixed densities between 136 and 750 kg·m−3. The measurements cover a range of temperatures from 300 to 556 K. The coverage includes the one- and two-phase regions, the coexistence curve, the near-critical, and the supercritical regions. A high-temperature, high-pressure, adiabatic, and nearly constant-volume calorimeter was used for the measurements. Uncertainties of the heat-capacity measurements are estimated to be 2–3% depending on the experimental density and temperature. Temperatures at saturation, T S(ρ), for each measured density (isochore) were measured using a quasi-static thermogram technique. The uncertainty of the phase-transition temperature measurements is 0.02 K. The critical temperature and the critical density for pure methanol were extracted from the saturated data (T SS) near the critical point. For one near-critical isochore (398.92 kg·m−3), the measurements were performed in both cooling and heating regimes to estimate the effect of thermal decomposition (chemical reaction) on the heat capacity and phase-transition properties of methanol. The measured values of C V and saturated densities (T SS) for methanol were compared with values calculated from various multiparametric equations of state (EOS) (IUPAC, Bender-type, polynomial-type, and nonanalytical-type), scaling-type (crossover) EOS, and various correlations. The measured C V data have been analyzed and interpreted in terms of extended scaling equations for the selected thermodynamic paths (critical isochore and coexistence curve) to accurately calculate the values of the asymptotical critical amplitudes (\(A_0^\pm\) and B 0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yerlett T.K., Wormald C.J. (1986). J. Chem. Thermodyn. 18:719

    Article  Google Scholar 

  2. Straty G.C., Palavra A.M.F., Bruno T.J. (1986). Int. J. Thermophys. 7:1077

    Article  Google Scholar 

  3. R. Ta’ani, Dr. Ing. Thesis (Karlsruhe, 1976).

  4. I. M. Abdulagatov, V. I. Dvorynchikov, M. M. Aliev, and A. N. Kamalov, in Steam, Water, and Hydrothermal Systems, Proc. 13th Int. Conf. Prop. Water and Steam, P. R. Tremaine, P. G. Hill, D. E. Irish, and P. V. Balakrishnan, eds. (NRC Research Press, Ottawa, 2000), pp.157–164.

  5. Bruno T.J., Straty G.C. (1986). J. Res. NBS 91:135

    Google Scholar 

  6. A. R. Bazaev, I. M. Abdulagatov, J. W. Magee, and E. A. Bazaev, J. Supercrit. Fluids (in press).

  7. Ting S.S.T., Macnaughton S.J., Tomasko D.L., Foster N.R. (1993). Ind. Eng. Chem. Res. 32:1471

    Article  Google Scholar 

  8. Gurdial G.S., Macnaughton S.J., Tomasko D.L., Foster N.R. (1993). Ind. Eng. Chem. Res. 32:1488

    Article  Google Scholar 

  9. Dobbs J.M., Wong J.M., Lahiere R.J., Johnston K.P. (1987). Ind. Eng. Chem. Res. 26:56

    Article  Google Scholar 

  10. Ekart M.P., Bennett K.L., Ekart S.M., Gurdial G.S., Liotta C.L., Eckert C.A. (1993). AIChE J. 39:235

    Article  Google Scholar 

  11. Dooley K.M., Kao Ch.-P., Gambrell R.P., Knopf F.C. (1987). Ind. Eng. Chem. Res. 26:2058

    Article  Google Scholar 

  12. K. M. De Reuck and R. J. B. Craven, Methanol. International Thermodynamic Tables of the Fluid State-12 (Blackwell, Oxford, 1993).

  13. Eubank P.T. (1970). Chem. Eng. Symp. Ser. 66:16

    Google Scholar 

  14. Abdulagatov I.M., Kiselev S.B., Ely J.F., Polikhronidi N.G., Abdurashidova A. (2005). Int. J. Thermophys. 26:1327

    Article  Google Scholar 

  15. Aliev M.M., Magee J.W., Abdulagatov I.M. (2003). Int. J. Thermophys. 24:1527

    Article  Google Scholar 

  16. Kitajima H., Kagawa N., Endo H., Tsuruno S., Magee J.W. (2003). J. Chem. Eng. Data 48:1583

    Article  Google Scholar 

  17. Kuroki T., Kagawa N., Endo H., Tsuruno S., Magee J.W. (2001). J. Chem. Eng. Data 46:1101

    Article  Google Scholar 

  18. Ya. M. Suleimanov, Ph.D. Thesis (Power Eng. Research Inst., Baku, 1971).

  19. Ramsay W., Young S. (1887). Phyl. Trans. Roy. Soc. (London) A 178:313

    ADS  Google Scholar 

  20. Efremov Yu.V. (1966). Russ. J. Phys. Chem. 40:1240

    Google Scholar 

  21. Cibulka I. (1993). Fluid Phase Equilib. 89:1

    Article  Google Scholar 

  22. Machado J.R.S., Streett W.B. (1983). J. Chem. Eng. Data 28:218

    Article  Google Scholar 

  23. Goodwin R.D. (1987). J. Phys. Chem. Ref. Data 16:799

    ADS  Google Scholar 

  24. Zubarev V.N., Bagdonas A.V. (1967). Teploenergetika 4:79

    Google Scholar 

  25. W. E. Donham, Ph.D. Thesis (Ohio State University, Columbus, Ohio, 1953).

  26. Kay W.B., Donham W.E. (1955). Chem. Eng. Sci. 4:1

    Article  Google Scholar 

  27. A. D. Kozlov, Methanol: Equations for Calculation of Thermophysical Properties, private communication (Russian Research Center for Standardization, Information and Certification of Materials, Moscow, Russia, 2002).

  28. Straty G.C., Ball M.J., Bruno T.J. (1988). J. Chem. Eng. Data 33:115

    Article  Google Scholar 

  29. Hales J.L., Ellender J.H. (1976). J. Chem. Thermodyn. 8:1177

    Article  Google Scholar 

  30. Gude M., Teja A.S. (1995). J. Chem. Eng. Data 40:1025

    Article  Google Scholar 

  31. Kh. I. Amirkhanov, G. V. Stepanov, and B. G. Alibekov, Isochoric Heat Capacity of Water and Steam (Amerind Pub. Co., New Delhi, 1974).

  32. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2001). Int. J. Thermophys. 22:189

    Article  Google Scholar 

  33. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2002). Int. J. Thermophys. 23:745

    Article  Google Scholar 

  34. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2003). Int. J. Thermophys. 24:405

    Article  Google Scholar 

  35. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M. (2000). Int. J. Thermophys. 21:1073

    Article  Google Scholar 

  36. Mursalov B.A., Abdulagatov I.M., Dvoryanchikov V.I., Kiselev S.B. (1999). Int. J. Thermophys. 20:1497

    Article  Google Scholar 

  37. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., Magee J.W., Stepanov G.V. (2004). J. Supercrit. Fluids 33:209

    Article  Google Scholar 

  38. Polikhronidi N.G., Abdulagatov I.M., Magee J.W., Batyrova R.G. (2001). J. Chem. Eng. Data 46:1064

    Article  Google Scholar 

  39. Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G. (1994). J. Chem. Thermodyn. 26:1031

    Article  Google Scholar 

  40. Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M. (2000). Fluid Phase Equilib. 175:153

    Article  Google Scholar 

  41. Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G. (2002). Fluid Phase Equilib. 201:269

    Article  Google Scholar 

  42. Vargaftik N.B. (1983). Handbook of Physical Properties of Liquids and Gases, 2nd edn. Hemisphere, New York

    Google Scholar 

  43. Wagner W., Pruß A. (2002). J. Phys. Chem. Ref. Data 31:387

    Article  ADS  Google Scholar 

  44. Keyes F.G., Smith L.B. (1933). Proc. Amer. Acad. Arts Sci. 68:505

    Google Scholar 

  45. Kamilov I.K., Stepanov G.V., Abdulagatov I.M., Rasulov A.R., Milikhina E.I. (2001). J. Chem. Eng. Data 46:1556

    Article  Google Scholar 

  46. Abdulagatov I.M., Mursalov B.A., Dvoryanchikov V.I. (2000). J. Chem. Eng. Data 45:1133

    Article  Google Scholar 

  47. Valyashko V.M., Abdulagatov I.M., Levelt-Sengers J.H.M. (2000). J. Chem. Eng. Data 45:1139

    Article  Google Scholar 

  48. Ya. R. Chashkin, V. A. Smirnov, and A. V. Voronel, Thermophysical Properties of Substances and Materials, (Moscow, GSSSD, 1970), Vol. 2, p. 139.

  49. A. V. Voronel, in Phase Transitions and Critical Phenomena, C. Domb and M. S. Green, eds. (Academic Press, London, 1974), Vol. 5, p. 343.

  50. J. V. Sengers and J. M. H. Levelt Sengers, Progress in Liquid Physics, C.A. Croxton, ed. (Wiley, New York, 1978).

  51. Sengers J.V., Levelt Sengers J.M.H. (1986). Ann. Rev. Phys. Chem. 37:189

    Article  Google Scholar 

  52. Lemmon E.W., Span R. (2006). J. Chem. Eng. Data 51:785

    Article  Google Scholar 

  53. Polt A., Platzer B., Maurer G. (1992). Chem. Tech. (Leipzig) 44:216

    Google Scholar 

  54. M. E. Fisher, in Critical Phenomena, Lectures Notes in Physics, F. J. W. Hahne, ed. (Springer, Berlin, 1988), Vol. 186, p. 1

  55. M. A. Anisimov and J. V. Sengers, in Equations of State for Fluids and Fluid Mixtures, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White Jr., eds. (Elsevier, Amsterdam, 2000).

  56. Greer S.C., Moldover M.R. (1981). Ann. Rev. Phys. Chem. 32:233

    Article  Google Scholar 

  57. Anisimov M.A. (1991). Critical Phenomena in Liquids and Liquid Crystals. Gordon and Breach, Philadelphia

    Google Scholar 

  58. M. Levy, J. C. Le Guillou, and J. Zinn-Justin, eds., Phase Transitions, Cargese 1980 (Plenum, New York, 1982).

  59. Liu A.J., Fisher M.E. (1989). Physica A 156:35

    Article  ADS  MathSciNet  Google Scholar 

  60. Bagnuls C., Bervilliev C., Meiron D.I., Nickel B.C. (1987). Phys. Rev. B 35:3585

    Article  ADS  Google Scholar 

  61. Wegner F.J. (1972). Phys. Rev. B 5:4529

    Article  ADS  Google Scholar 

  62. Ley -Koo M., Green M.S. (1981). Phys. Rev. A 23:2650

    Article  ADS  Google Scholar 

  63. Saul D.M., Wortis M., Jasnow D. (1975). Phys. Rev. B 11:2571

    Article  ADS  Google Scholar 

  64. Camp W.J., Van Dyke J.P. (1975). Phys. Rev. B 11:2579

    Article  ADS  Google Scholar 

  65. Fisher M.E., Zinn S.-Y., Upton P.J. (1999). Phys. Rev. B59:14533

    Article  ADS  Google Scholar 

  66. Guida R., Zinn-Justin J. (1998). J. Phys. A Math Gen. 31:8103

    Article  MATH  ADS  MathSciNet  Google Scholar 

  67. Nicoll J.F. (1981). Phys. Rev. A 24:2203

    Article  ADS  Google Scholar 

  68. Hensel F. (1995). Adv. Phys. 44:3

    Article  ADS  Google Scholar 

  69. Mermin N.D. (1971). Phys. Rev. Lett. 26:169

    Article  ADS  Google Scholar 

  70. Rehr J.J., Mermin N.D. (1973). Phys. Rev. A 8:472

    Article  ADS  Google Scholar 

  71. Widom B., Rowlinson J.S. (1970). J. Chem. Phys. 52:1670

    Article  ADS  Google Scholar 

  72. Fisher M.E., Orkoulas G. (2000). Phys. Rev. Lett. 85:696

    Article  ADS  Google Scholar 

  73. Orkoulas G., Fisher M.E., Ustün C. (2000). J. Chem. Phys. 113:7530

    Article  ADS  Google Scholar 

  74. Young S. (1910). Sci. Proc. Roy. Dublin Soc. 21:374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Abdulagatov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polikhronidi, N.G., Abdulagatov, I.M., Stepanov, G.V. et al. Isochoric Heat-Capacity Measurements for Pure Methanol in the Near-Critical and Supercritical Regions. Int J Thermophys 28, 163–193 (2007). https://doi.org/10.1007/s10765-007-0164-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0164-4

Keywords

Navigation