Skip to main content
Log in

Molecular Dynamics Calculation of the Viscosity of Xenon Gas

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The density variation of the viscosity of xenon gas is determined using molecular dynamics simulation with a semi-empirical pair potential fit to low-density gas properties. The gas states ranged in density from 0.37 to 7.62 mol · dm−3, and varied in temperature from 240 −591 K. The simulation results match the kinetic-theory predictions for the model potential at the lowest density, and systematically lie below the experimental values for higher densities. This indicates the need for many-body interactions to accurately predict the viscosity of xenon gas at even moderate densities. An operational criterion for identifying the density region where kinetic theory is appropriate is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friend D.G., Rainwater J.C. (1984). Chem. Phys. Lett. 107:590

    Article  ADS  Google Scholar 

  2. Rainwater J.C., Friend D.G. (1987). Phys. Rev. A 36:4062

    Article  ADS  Google Scholar 

  3. Najafi B., Ghayeb Y., Rainwater J.C., Alavi S., Snider R.F. (1998). Physica A 260:31

    Article  Google Scholar 

  4. Fernández G.A., Vrabec J., Hasse H. (2004). Fluid Phase Equilibr. 221:157

    Article  Google Scholar 

  5. Marcelli G., Todd B.D., Sadus R.J. (2001). Fluid Phase Equilibr. 183:371

    Article  Google Scholar 

  6. Dham A.K., Meath W.J., Allnat A.R., Aziz R.A., Salman M.J. (1990). Chem. Phys. 142:173

    Article  Google Scholar 

  7. Janzen A., Aziz R.A. (1995). Chem. Eng. Commun. 135:161

    Google Scholar 

  8. Barker J.A., Watts R.O., Lee J.K., Schafer T.P., Lee Y.T. (1974). J. Chem. Phys 61:3081

    Article  ADS  Google Scholar 

  9. Meier K., Laesecke A., Kabelac S. (2004). J. Chem. Phys. 121:3671

    Article  ADS  Google Scholar 

  10. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, 2nd Ed. (Academic Press, New York, 1986).

  11. Malijevský A., Malijevský A. (2003). Molec. Phys. 101:3335

    Article  ADS  Google Scholar 

  12. Bich E., Millat J., Vogel E. (1990). J. Phys. Chem. Ref. Data 19:1289

    Article  ADS  Google Scholar 

  13. Schofield P. (1973). Comput. Phys. Comm. 5:17

    Article  ADS  Google Scholar 

  14. Beeman D.(1976). J. Comput. Phys. 20:130

    Article  ADS  Google Scholar 

  15. Zwanzig R., Mountain R.D. (1965). J. Chem. Phys. 43:4464

    Article  MathSciNet  ADS  Google Scholar 

  16. Errington J.R. (2003). J. Chem. Phys. 118:9915

    Article  ADS  Google Scholar 

  17. R. D. Mountain, Unpublished work (2006).

  18. S̆ifner O., Klomfar J. (1994). J. Phys. Chem. Ref. Data 23:63

    Article  ADS  Google Scholar 

  19. Axilrod B.M., Teller E. (1943). J. Chem. Phys. 11:299

    Article  ADS  Google Scholar 

  20. Trappeniers N.J., Botzen A., Ten Seldam C.A., Van Den Berg H.R., Van Oosten J. (1965). Physica 31:1681

    Article  ADS  Google Scholar 

  21. V. A. Rabinovich, A. A. Vasserman, V. I. Nedostup, and L. S. Veksler, Thermophysical Properties of Neon, Argon, Krypton and Xenon (Hemisphere, New York, 1987), pp. 229–230.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond D. Mountain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mountain, R.D. Molecular Dynamics Calculation of the Viscosity of Xenon Gas. Int J Thermophys 28, 259–267 (2007). https://doi.org/10.1007/s10765-007-0162-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0162-6

Keywords

Navigation