Skip to main content
Log in

Density and Thermal Conductivity Measurements for Silicon Melt by Electromagnetic Levitation under a Static Magnetic Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The density and thermal conductivity of a high-purity silicon melt were measured over a wide temperature range including the undercooled regime by non-contact techniques accompanied with electromagnetic levitation (EML) under a homogeneous and static magnetic field. The maximum undercooling of 320 K for silicon was controlled by the residual impurity in the specimen, not by the melt motion or by contamination of the material. The temperature dependence of the measured density showed a linear relation for temperature as: ρ(T) =  2.51 × 103−0.271(TT m) kg · m−3 for 1367 K <  T <  1767 K, where T m is the melting point of silicon. A periodic heating method with a CO2 laser was adopted for the thermal conductivity measurement of the silicon melt. The measured thermal conductivity of the melt agreed roughly with values estimated by a Wiedemann–Franz law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norman A.F., Eckler K., Zambon A., Gatner F., Moir S.A., Ramous E., Herlach D.M., Greer A.L. (1998). Acta Mater 46:3355

    Article  Google Scholar 

  2. Hibiya T., Egry I. (2005). Meas. Sci. Technol 16:317

    Article  ADS  Google Scholar 

  3. Nagashio K., Takamura Y., Kuribayashi K., Shiohara Y. (1999). J. Cryst. Growth 200:118

    Article  ADS  Google Scholar 

  4. Beagnon E., Tournier R. (1991). Nature 349:470

    Article  ADS  Google Scholar 

  5. Wakayama N.I., Ataka M., Abe H. (1997) . J. Cryst. Growth 178:653

    Article  ADS  Google Scholar 

  6. Rhim W.K., Osaka K. (2000). J. Cryst. Growth 208:313

    Article  ADS  Google Scholar 

  7. Paradis P.-F., Ishikawa T., Yoda S. (2005). Microgravity Sci. Technol. XVI-I:94

    Article  Google Scholar 

  8. Egry I., Non-Cryst J. (1999). Solid 250–252:63

    Google Scholar 

  9. Liu R.P., Herlach D.M., Vandyoussefi M., Greer A.L. (2004). Metall. Mater. Trans. A 35A:607

    Google Scholar 

  10. Inatomi Y., Kikuchi M., Nakamura R., Kuribayashi K., Jimbo I. (2005). J. Cryst. Growth 275:193

    Article  ADS  Google Scholar 

  11. Onishi F., Inatomi Y., Tanaka T., Shinozaki N., Watanabe M., Fujimoto A., Itoh K. (2006). Jpn. J. Appl. Phys. 45:5274

    Article  ADS  Google Scholar 

  12. Hurle D.T.J., Jakeman E., Johnson C.P. (1974) . J. Fluid Mech. 64:565

    Article  ADS  Google Scholar 

  13. Bonvalot M., Gillon P., Tournier R. (1995). J. Magn. Magn. Mater. 151:283

    Article  ADS  Google Scholar 

  14. Gillon P. (2000). Mater. Sci. Eng. A 287:146

    Article  Google Scholar 

  15. H. Yasuda, I. Ohnaka, Y. Ninomiya, R. Ishii, and K. Kishio, Proc. 5th Int. Symp. Magnetic Suspension Technol. (Turin, 2001), p. 185.

  16. Ohnaka I., Ninomiya Y., Ishii R., Fujita S., Kishio K. (2004). J. Cryst. Growth 260:475

    Article  Google Scholar 

  17. Miyake T., Inatomi Y., Kuribayashi K. (2002). Jpn. J. Appl. Phys. 41:L811

    Article  ADS  Google Scholar 

  18. Onishi F., Nagashio K., Inatomi Y., Kuribayashi K. (2006) . J. Jpn. Soc. Microgravity Appl. 23:26

    Google Scholar 

  19. Bradshaw R.C., Schmidt D.P., Rogers J.R., Kelton K.F., Hyers R.W. (2005). Rev. Sci. Instrum. 76:125108

    Article  ADS  Google Scholar 

  20. Shimizu Y., Ishii J., Shinzato K., Baba T. (2005). Int. J. Thermophys. 26:203

    Article  Google Scholar 

  21. Onishi F., Nagashio K., Inatomi Y., Kuribayashi K. (2004). Jpn. J. Thermophys. Prop. 25:186

    Google Scholar 

  22. Engelman M.S. (1998). FAIDAP8.0. Fluent Inc., Lebanon New Hampshire

    Google Scholar 

  23. Takasuka E., Tokizaki E., Terashima K., Kimura S. (1997). Jpn. J. Appl. Phys 81:6384

    Article  ADS  Google Scholar 

  24. Langen M., Hibiya T., Eguchi M., Egry I. (1998). J. Cryst. Growth 186:550

    Article  ADS  Google Scholar 

  25. Sato Y., Nishizuka T., Hara K., Yamamura T., Waseda Y. (2000). Int. J. Thermophys. 21:1463

    Article  Google Scholar 

  26. Sasaki H., Ikari A., Terashima K., Kimura S. (1995). Jpn. J. Appl. Phys. 34:3426

    Article  ADS  Google Scholar 

  27. Sasaki H., Tokizaki E., Terashima K., Kimura S. (1994). Jpn. J. Appl. Phys. 33:6078

    Article  ADS  Google Scholar 

  28. Lucas L.D. (1970). Techniques of Metals Research, Vol IV, Part 2. John Wiley, New York, pp. 219-292

    Google Scholar 

  29. Yamamoto K., Abe T., Takasu S. (1991). Jpn. J. Appl. Phys 30:2423

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Inatomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inatomi, Y., Onishi, F., Nagashio, K. et al. Density and Thermal Conductivity Measurements for Silicon Melt by Electromagnetic Levitation under a Static Magnetic Field. Int J Thermophys 28, 44–59 (2007). https://doi.org/10.1007/s10765-007-0160-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0160-8

Keywords

Navigation