Skip to main content
Log in

Deformation due to Mechanical and Thermal Sources in a Thermoelastic Body with Voids under Axi-symmetric Distributions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The Laplace and Hankel transforms have been employed to find the general solution of a homogeneous, isotropic, thermoelastic half-space with voids for a plane axi-symmetric problem. The application of a thermoelastic half-space with voids subjected to a normal force and a thermal source acting at the origin has been considered to show the utility of the solution obtained. To obtain the solution in a physical form, a numerical inversion technique has been applied. The results in the form of displacements, stresses, temperature distribution, and change in volume fraction field are computed numerically and illustrated graphically for a magnesium crystal-like material to depict the effects of voids in the theory of coupled thermoelasticity (CT) and uncoupled thermoelasticity (UCT) for an insulated boundary and a temperature gradient boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nunziato J.W., Cowin S.C. (1979). Arch. Rational Mech. Anal. 72:175

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Cowin S.C., Nunziato J.W. (1983) J. Elasticity 13: 125

    Article  MATH  Google Scholar 

  3. Puri P., Cowin S.C. (1985) J. Elasticity 15:167

    Article  MATH  Google Scholar 

  4. Dhaliwal R.S., Wang J. (1994) Int. J. Eng. Sci. 32:1823

    Article  MATH  MathSciNet  Google Scholar 

  5. Scarpetta E. (1995) Int. J. Eng. Sci.33:151

    Article  MATH  MathSciNet  Google Scholar 

  6. Birsan M. (2000). Libertas Math. 20:95

    MATH  MathSciNet  Google Scholar 

  7. Ciarletta M., Iovane G., Sumbatyan M.A. (2003). Int. J. Eng. Sci. 41:246

    Google Scholar 

  8. Rusu G. (1987). Bull. Polish Acad. Sci. Tech. Sci. 35:339

    MATH  MathSciNet  Google Scholar 

  9. Saccomandi G. (1992). Rend. Mat. Appl. 12:45

    MATH  MathSciNet  Google Scholar 

  10. Ciarletta M., Scalia A. (1993). Z. Angew. Math. Mech. 73:67

    MATH  MathSciNet  Google Scholar 

  11. Ciarletta M., Scarpetta E. (1995). Z. Angew. Math. Mech. 75:707

    MATH  MathSciNet  Google Scholar 

  12. Dhaliwal R.S., Wang J. (1995). Acta Mech. 110:33

    Article  MATH  MathSciNet  Google Scholar 

  13. Marin M. (1997). Rend. Mat. Appl. 17:103

    MATH  MathSciNet  Google Scholar 

  14. Marin M. (1997). Arch. Math. (Brno) 33:301

    MATH  MathSciNet  Google Scholar 

  15. Marin M. (1998). Cienc. Mat. (Havana) 16:101

    MATH  MathSciNet  Google Scholar 

  16. Marin M., Salca H. (1998). Theoret. Appl. Mech. 24:99

    MATH  MathSciNet  Google Scholar 

  17. Chirita S., Scalia A. (2001). J. Therm. Stresses 24:433

    Article  MathSciNet  Google Scholar 

  18. Pompei A., Scalia A. (2002). J. Therm. Stresses 25:183

    Article  MathSciNet  Google Scholar 

  19. Scalia A., Pompei A., Chirita S. (2004). J. Therm. Stresses 27:209

    MathSciNet  Google Scholar 

  20. Wadhawan M.C. (1973). Pageoph 102:37

    Article  Google Scholar 

  21. Ghosen A.H., Sabbaghia M. (1982). J. Therm. Stresses 5:299

    Google Scholar 

  22. Chattopadhyay A., Keshri A., Base S. (1985). Indian J. Appl. Math. 16:807

    MATH  Google Scholar 

  23. Yang Y.C., Wang T.S., Chen C.K. (1986). J. Therm. Stresses 9:19

    Google Scholar 

  24. Noda N. (1987). J. Therm. Stresses 10:57

    Google Scholar 

  25. Kurashige M. (1991). Trans. JSME Ser. A 57:2672

    Google Scholar 

  26. Chandrasekharaiah D.S., Keshavan H.R. (1992). Acta Mech. 92:61

    Article  MATH  Google Scholar 

  27. Ezzat M.A. (1995). Int. J. Eng. Sci. 33:2011

    Article  MATH  Google Scholar 

  28. Khomasuridze N., Khomasuridze I. (1998). Proc. I. Vekua Inst. Appl. Math. 48:44

    MATH  MathSciNet  Google Scholar 

  29. Yevtushenko A.A, Kulchysky-Zhyhailo R.D. (1999). Int. J. Eng. Sci. 37:1959

    Article  Google Scholar 

  30. Mukhopadhyay S., Mukherjee R.N. (2002). Indian J. Appl. Math. 35:635

    Google Scholar 

  31. Rahman M. (2003). Int. J. Eng. Sci. 41:1899

    Article  Google Scholar 

  32. Yanyutin E.G., Yanchevsky I.V. (2004). Int. J. Solids Struct. 41:3643

    Article  MATH  Google Scholar 

  33. Sherief H.H., Elmisiery A.E.M., Elhagary M.A. (2004). J. Therm. Stresses 27:885

    Article  Google Scholar 

  34. Baksi A., Bera R.K., Debnath L. (2004). Int. J. Eng. Sci. 42:1573

    Article  MathSciNet  Google Scholar 

  35. Kumar R., Rani L. (2005). J. Therm. Stresses 28:123

    Article  Google Scholar 

  36. Nowacki W. (1986). Thermoelasticity, 2nd edn. Pergamon, PWN-Polish Scientific Pubs., Warsaw, Poland

    MATH  Google Scholar 

  37. Honig G., Hirdes U. (1984). J. Comput. Appl. Math. 10:113

    Article  MATH  MathSciNet  Google Scholar 

  38. Press W.H., Teukolshy S.A., Vellerling W.T., Flannery B.P. (1986). Numerical Recipes. Cambridge University Press, Cambridge

    Google Scholar 

  39. Dhaliwal R.S., Singh A. (1980) Dynamic Coupled Thermoelasticity. Hindustan Pub. Corp., New Delhi, India, p. 726

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, R., Rani, L. Deformation due to Mechanical and Thermal Sources in a Thermoelastic Body with Voids under Axi-symmetric Distributions. Int J Thermophys 28, 317–341 (2007). https://doi.org/10.1007/s10765-007-0146-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0146-6

Keywords

Navigation