Skip to main content
Log in

Liquid Saturation Density from Simple Equations of State

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Several simple equations of state, requiring only two input properties, have been studied in order to determine the liquid saturation density of 144 fluids of different kinds. This study includes old and new simple modifications of the van der Waals equation of state, and the Carnahan–Starling–Yelash–Kraska and Carnahan–Starling–Dieterici equations. The new simple modifications of the van der Waals equation give better overall results than some other more complex proposed equations, especially near the critical point. The recent equation proposed by Eslami including the boiling temperature and density as input parameters was also checked, and was found not to reproduce the critical point, but to give excellent results at intermediate or low temperatures. As a reference, the behavior of the well-known Soave– Redlich–Kwong and Peng–Robinson equations, and the more recent expression proposed by Mohsen-Nia et al. that requires three input parameters were also checked. The latter does not improve the accuracy of the Peng–Robinson equation, and very simple van-der-Waals type equations give better overall results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reid R.C, Prausnitz J.M, Poling B.E, (1987). The Properties of Gases and Liquids, 4th Ed. McGraw Hill, New York

    Google Scholar 

  2. Aalto M.M, Keskinen K.I, Aittamaa J, Liukkonen S, (1996). Fluid Phase Equilib. 114:1

    Article  Google Scholar 

  3. Nasrifar Kh., Ayatollahi Sh., Moshfeghian M, (2000). Fluid Phase Equilib. 168:149

    Article  Google Scholar 

  4. Poling B.E, Prausnitz J.M, O’ Connell J.P., (2001). The Properties of Gases and Liquids, 5th Ed. McGraw-Hill, New York

    Google Scholar 

  5. Miqueu C, Mendiboure B, Graciaa A, Lachaise J, (2003). Fluid Phase Equilib. 207:225

    Article  Google Scholar 

  6. Queimada A.J, Stenby E.H, Marrucho I.M, Coutinho J.A.P., (2003). Fluid Phase 212:303

    Article  Google Scholar 

  7. Valderrama J.O, Alfaro M, (2000). Oil Gas Sci. Technol. 55:1

    Google Scholar 

  8. Valderrama J.O, (2003). Ind. Eng. Chem. Res. 42:1603

    Article  Google Scholar 

  9. Eubank P.T, Wang X, (2003). Ind. Eng. Chem. Res. 42:3838

    Article  Google Scholar 

  10. Lin H, Duan Y.Y, (2005). Fluid Phase Equilib. 233:194

    Article  Google Scholar 

  11. Geanã D., Feroiu V, (2000). Fluid Phase Equilib. 174:51

    Article  Google Scholar 

  12. Feroiu V, Geanã D., (2003). Fluid Phase Equilib. 207:283

    Article  Google Scholar 

  13. Wyczalkowska A.K, Sengers J.V, Anisimov M.A, (2004). Physica A 334:482

    Article  ADS  Google Scholar 

  14. Kudelkova L, Lovland J, Vonka P, (2004). Fluid Phase Equilib. 218:103

    Article  Google Scholar 

  15. Mulero A, Cachadiña I., Cuadros F, (2006). Chem. Eng. Comm. 193:1445

    Article  Google Scholar 

  16. Mulero A, Cachadiña I., Parra M.I, (2006). Ind. Eng. Chem. Res. 45:1840

    Article  Google Scholar 

  17. Parra M.I, Mulero A, Cuadros F, (2006). Int. J. Thermophys. 27:1435

    Article  Google Scholar 

  18. Yelash L.V, Kraska T, (1999). Fluid Phase Equilib. 162:115

    Article  Google Scholar 

  19. Wei Y.S, Sadus R.J, (2000). AIChE J. 46:169

    Article  Google Scholar 

  20. Redlich O, Kwong J.N.S., (1949). Chem. Rev. 44:233

    Article  Google Scholar 

  21. Fox J.R, (1983). Fluid Phase Equilib. 14:45

    Article  Google Scholar 

  22. Soave G, (1972). Chem. Eng. Sci. 27:1197

    Article  Google Scholar 

  23. Peng D.Y, Robinson D.B, (1976). Ind. Eng. Chem. Fundam. 15:59

    Article  MATH  Google Scholar 

  24. Eslami H, (2000). Int. J. Thermophys. 21:1123

    Article  Google Scholar 

  25. Sadus R.J, J. Chem. Phys. 115:1460 (2001); 116:5193 (2002).

    Google Scholar 

  26. Sadus R.J, (2002). Phys. Chem. Chem. Phys. 4:919

    Article  Google Scholar 

  27. Sadus R.J, (2004). J. Chem. Phys. 120:8870

    Article  ADS  Google Scholar 

  28. Mohsen-Nia M., Modarress H, Mansoori G.A, (2003). Fluid Phase Equilib. 206:27

    Article  Google Scholar 

  29. Cachadiña I., Mulero A, Silbert M, (2004). J. Chem. Phys. 120:8868

    Article  ADS  Google Scholar 

  30. Román F.L., Mulero A, Cuadros F, (2004). Phys. Chem. Chem. Phys. 6:5402

    Article  Google Scholar 

  31. Ihm G, Song Y, Mason E.A, (1991). J. Chem. Phys. 94:3839

    Article  ADS  Google Scholar 

  32. Zhi Y, Lee H, (2002). Fluid Phase Equilib. 201:287

    Article  Google Scholar 

  33. Salim P.H, (2006). Fluid Phase Equilib. 240:224

    Article  Google Scholar 

  34. Carnahan N.F, Starling K.E, (1972). AIChE J. 18:1184

    Article  Google Scholar 

  35. DIPPR (Design Institute for Physical Property Data) Files Version 17.0, American Institute of Chemical Engineers, supplied by Technical Database Services, Inc., www.tds.cc (2003).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Mulero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulero, A., Cachadiña, I. Liquid Saturation Density from Simple Equations of State. Int J Thermophys 28, 279–298 (2007). https://doi.org/10.1007/s10765-006-0140-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0140-4

Keywords

Navigation