Skip to main content

Advertisement

Log in

Molecular Dynamics Calculation of Critical Point of Nickel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The critical point of nickel and the phase diagram near the critical point are numerically evaluated using molecular dynamics (MD) computations. Thermodynamic states on the phase diagram are calculated for a homogeneous material at equilibrium states. Isothermal lines on pv diagrams are constructed at temperatures below and above the critical temperature, and the liquid-gas coexistence lines and regimes are obtained. The critical point of nickel is obtained as T c =  9460± 20 K, ρ c =  2560± 100 kg· m−3, and p c =  1.08± 0.01 GPa. The method used in this work can be used to estimate thermodynamic properties of other materials at high temperature/pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Moran and H. N. Shapiro, Fundamentals of Engineering Thermodynamics (John Wiley & Sons, New York, 1996), pp. 72–74, 491.

  2. Guissani Y., Guillot B., (1996). J. Chem. Phys. 104:7633

    Article  ADS  Google Scholar 

  3. Dunikov D.O., Malyshenko S.P., Zhakhovskii V.V., (2001). J Chem Phys. 115: 6623

    Article  ADS  Google Scholar 

  4. Shibinsky A., Buldyrev S.V., Franzese G., Malescio G., Stanley H.E. (2004). Phys. Rev. E 69:061206

    Article  ADS  Google Scholar 

  5. Girifalco L.A., Weizer V.G., (1959). Phys. Rev. 114:687

    Article  ADS  Google Scholar 

  6. Foiles S.M., Baskes M.I., Daw M.S., (1986). Phys. Rev. B 33:7983

    Article  ADS  Google Scholar 

  7. Daw M.S., Foiles S.M., Baskes M.I., (1993). Mater. Sci. Rep. 9:251

    Article  Google Scholar 

  8. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987), pp. 78–80.

  9. J. M. Haile, Molecular Dynamics Simulation: Elementary Methods (John Wiley & Sons, New York, 1992), p. A1.

  10. Berendsen H.J.C., Postma J.P.M., van Gunsteren W.F., DiNola A., Haak J.R., (1984). J. Chem. Phys. 81:3684

    Article  ADS  Google Scholar 

  11. Young D.A., Alder B.J., (1971). Phys. Rev. A 3:364

    Article  ADS  Google Scholar 

  12. Martynyuk M.M., (1983). Russ. J. Phys. Chem. 57:810

    Google Scholar 

  13. Nikolaev D.N., Ternovoi V.Y., Pyalling A.A., Filimonov A.S., (2002). Int. J. Thermophys. 23:1311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfan Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, C., Xu, X. Molecular Dynamics Calculation of Critical Point of Nickel. Int J Thermophys 28, 9–19 (2007). https://doi.org/10.1007/s10765-006-0137-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0137-z

Keywords

Navigation