Skip to main content
Log in

High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Alloy D9 is a void-swelling resistant nuclear grade austenitic stainless steel (SS) based on AISI type 316-SS in which titanium constitutes an added predetermined alloying composition. In the present study, the high-temperature enthalpy values of alloy D9 with three different titanium-to-carbon mass percent ratios, namely Ti/C = 4, 6, and 8, have been measured using inverse drop calorimetry in the temperature range from 295 to 1323 K. It is found that within the level of experimental uncertainty, the enthalpy values are independent of the Ti–C mass ratio. The temperature dependence of the isobaric specific heat C P is obtained by a linear regression of the measured enthalpy data. The measured C P data for alloy D9 may be represented by the following best-fit expression:

$$\hbox{C}_P(\hbox{J} \cdot \hbox{kg}^{-1}\cdot \hbox{K}^{-1})= 431 + 17.7 \times 10^{-2}T + 8.72 \times 10^{-5}/T^2.$$

It is found that the measured enthalpy and specific heat values exhibit good agreement with reported data on 316 and other related austenitic stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Dietz, Structural Materials, Materials Science and Technology: A Comprehensive Treatment 10 B, R. W. Cahn, P. Haasen, and E. I. Kramer, eds. (VCH, Weinheim, 1994), p. 56.

  2. Cawthorne C., Fulton E. (1967). Nature 216:575

    Article  ADS  Google Scholar 

  3. Garner F.A. (1994). “Irradiation Performance of Clad and Structural Steels in Liquid Metal Reactors”. In: Cahn R.W., Haasen P., Kramer E.I. (eds) Materials Science and Technology: A Comprehensive Treatment Vol 10 A. VCH, Weinheim, pp 420

    Google Scholar 

  4. Garner F.A., Wolfer W.G. (1981). J. Nucl. Mater 102:143

    Article  ADS  Google Scholar 

  5. Johnston W.G., Rosolowski J.H., Turkalo A.M., Lauritzen T. (1994). J. Nucl. Mater 54:24

    Article  Google Scholar 

  6. Kesternich W., Meertens D. (1986). Acta Metall 34:1071

    Article  Google Scholar 

  7. Johnston W.G., Rosolowski J.H., Turkalo A.M., Lauritzen T. (1973). J. Nucl. Mater 48:330

    Article  ADS  Google Scholar 

  8. Kurshita H., Miroga T., Watanabe H., Yoshida N., Kayano H., Hamilton M.L. (1994). J. Nucl. Mater 212–215:519

    Article  Google Scholar 

  9. Shibahara I., Akasaka N., Onose S., Okada H. (1994). J. Nucl. Mater 212–215:487

    Article  Google Scholar 

  10. S. L. Mannan and P. V. Sivaprasad, in Encyclopaedia of Materials Science and Engineering, Vol. 3, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, and S. Mahajan, eds., (Elsevier, New York, 2001), p. 2857.

  11. Venkadesan S., Bhaduri A.K., Rodriguez P., Padmanaban K.A. (1992). J. Nucl. Mater 186:177

    Article  ADS  Google Scholar 

  12. Sandhya R., Rao K.B.S., Mannan S.L., Devanathan R. (1999). Scripta Mater 41:921

    Article  Google Scholar 

  13. Sandhya R., Rao K.B.S., Mannan S.L., Devanathan R. (2001). Int. J. Fatigue 23:789

    Article  Google Scholar 

  14. Sivaprasad P.V., Mannan S.L., Prasad Y.V.R.K., Chaturvedi R.C. (2001). Mater. Sci. Tech 17:545

    Google Scholar 

  15. Jose R., Raju S., Divakar R., Mohandas E., Panneerselvam G., Antony M.P., Sivasubramanian K. (2003). J. Nucl. Mater. 317:54

    Article  ADS  Google Scholar 

  16. Leitner J., Strejc A., Sedimidubsky D., Ruzicka K. (2003). Thermochim. Acta 401:169

    Article  Google Scholar 

  17. Archer D.G. (1993). J. Phys. Chem. Ref Data 22:1441

    Article  ADS  Google Scholar 

  18. Lang J.1. (1959). Thermodynamic and Transport Properties of Gases, Liquids and Solids. McGraw-Hill, New York, p 405

    Google Scholar 

  19. Bogaard R.H., Desai P.D., Li H.H., Ho C.Y. (1993). Thermochim. Acta 218:373

    Article  Google Scholar 

  20. N. L. Perovic, K. D. Maglic, A. M. Stanimirovic, and G. S. Vukovic, High Temp-High Press. 27/28:53 (1995/96).

    Google Scholar 

  21. J. H. Harding, D. G. Martin, and P. E. Potter, EUR-12402 report (AERE, Harwell, United Kingdom, 1989), p. 85.

  22. Miiller A.P., Cezairliyan A. (1991) . High Temp-High Press 23:205

    Google Scholar 

  23. Cezairliyan A., Miiller A.P. (1980). Int. J. Thermophys 1:83

    Article  Google Scholar 

  24. C. S. Kim, Thermophysical Properties of Stainless Steels, ANL-75–55 report, Argonne, Illinois (1975), pp. 1–24.

  25. NIST Cryogenic Materials Property Database website, http://cryogenics.nist.gov/NewFiles/304LSS.html.

  26. Corsan J.M., Mitchem N.J. (1979). Cryogenics 19:11

    Article  Google Scholar 

  27. Grimvall G. (1991). Thermophysical Properties of Materials. North-Holland, Amsterdam

    Google Scholar 

  28. Gerlich D., Hart S. (1984). J. Appl. Phys 55:880

    Article  ADS  Google Scholar 

  29. Leibowitz L., Blomquist R.A.(1988). Int. J. Thermophys 9:873

    Article  Google Scholar 

  30. A. Banerjee, R. Divakar. S. Raju, and E. Mohandas, unpublished research (2005).

  31. Ledbetter H. (1981). J. Appl. Phys 52:1587

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Raju.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Raju, S., Divakar, R. et al. High Temperature Heat Capacity of Alloy D9 Using Drop Calorimetry Based Enthalpy Increment Measurements. Int J Thermophys 28, 97–108 (2007). https://doi.org/10.1007/s10765-006-0136-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0136-0

Keywords

Navigation