Skip to main content
Log in

An Extended Equation of State Modeling Method I. Pure Fluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A new technique is proposed here to represent the thermodynamic surface of a pure fluid in the fundamental Helmholtz energy form. The peculiarity of the present method is the extension of a generic equation of state for the target fluid, which is assumed as the basic equation, through the distortion of its independent variables by individual shape functions, which are represented by a neural network used as function approximator. The basic equation of state for the target fluid can have the simple functional form of a cubic equation, as, for instance, the Soave–Redlich–Kwong equation assumed in the present study. A set of nine fluids including hydrocarbons, haloalkane refrigerants, and strongly polar substances has been considered. For each of them the model has been regressed and then validated against volumetric and caloric properties generated in the vapor, liquid, and supercritical regions from highly accurate dedicated equations of state. In comparison with the underlying cubic equation of state, the prediction accuracy is improved by a factor between 10 and 100, depending on the property and on the region. It has been verified that about 100 density experimental points, together with from 10 to 20 coexistence data, are sufficient to guarantee high prediction accuracy for different thermodynamic properties. The method is a promising modeling technique for the heuristic development of multiparameter dedicated equations of state from experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmidt R., Wagner W. (1985). Fluid Phase Equilib. 19:175

    Article  Google Scholar 

  2. Setzmann U., Wagner W. (1989). Int. J. Thermophys. 10:1103

    Article  Google Scholar 

  3. Span R. (2000) Multiparameter Equations of State. Springer Verlag, Berlin

    Google Scholar 

  4. Ely J.F. (1990). Adv. Cryog. Eng. 35:1511

    Google Scholar 

  5. Huber M., Ely J.F. (1994). Int. J. Refrig. 17:18

    Article  MATH  Google Scholar 

  6. Estela-Uribe J.F., Trusler J.P.M. (1998). Fluid Phase Equilib. 150-151:225

    Article  Google Scholar 

  7. Estela-Uribe J.F., Trusler J.P.M. (2001). Fluid Phase Equilib. 183-184:21

    Article  Google Scholar 

  8. Estela-Uribe J.F., Trusler J.P.M. (2003). Fluid Phase Equilib. 204:15

    Article  Google Scholar 

  9. Estela-Uribe J.F., Trusler J.P.M. (2004). Fluid Phase Equilib. 216:59

    Article  Google Scholar 

  10. Scalabrin G., Piazza L., Cristofoli G. (2002). Int. J. Thermophys. 23:57

    Article  Google Scholar 

  11. Piazza L., Scalabrin G., Marchi P., Richon D. (2006). Int. J. Refrig. 29:1182

    Article  Google Scholar 

  12. Scalabrin G., Piazza L., Richon D. (2002). Fluid Phase Equilib. 199:33

    Article  Google Scholar 

  13. Reed T.M., Gubbins K.E. (1973) Applied Statistical Mechanics. McGraw-Hill, New York

    Google Scholar 

  14. Rowlinson J.S., Swinton F.L. (1982) Liquids and Liquid Mixtures. Butterworths, London

    Google Scholar 

  15. Rowlinson J.S., Watson I.D. (1969). Chem. Eng. Sci. 24:1565

    Article  Google Scholar 

  16. Leland T.W., Chappelear P.S. (1968). Ind. Eng. Chem. 60:15

    Article  Google Scholar 

  17. Scalabrin G., Marchi P., Bettio L., Richon D. (2006). Int. J. Refrig. 29:1195

    Article  Google Scholar 

  18. Redlich O., Kwong J.N.S. (1949). Chem. Rev. 44:233

    Article  Google Scholar 

  19. Soave G. (1972). Chem. Eng. Sci. 27:1197

    Article  Google Scholar 

  20. Mollerup J. (1980). Fluid Phase Equilib. 4:11

    Article  Google Scholar 

  21. Reid R.C., Prausnitz J.M., Poling B.E. (1988) The Properties of Gases and Liquids. McGraw-Hill, New York

    Google Scholar 

  22. Peneloux A., Rauzy E., Freze R. (1982). Fluid Phase Equilib. 8:7

    Article  Google Scholar 

  23. Friend D.G., Ingham H., Ely J.F. (1991). J. Phys. Chem. Ref. Data 20:275

    Article  ADS  Google Scholar 

  24. Younglove B.A., Ely J.F. (1987). J. Phys. Chem. Ref. Data 16:577

    ADS  Google Scholar 

  25. Tillner-Roth R., Yokozeki A. (1997). J. Phys. Chem. Ref. Data 26:1273

    ADS  Google Scholar 

  26. Outcalt S.L., McLinden M.O. (1995). Int. J. Thermophys. 16:79

    Article  Google Scholar 

  27. Tillner-Roth R., Baehr H. D. (1994). J. Phys. Chem. Ref. Data 23:657

    ADS  Google Scholar 

  28. Outcalt S.L., McLinden M.O. (1997). Int. J. Thermophys. 18:1445

    Google Scholar 

  29. R. Tillner-Roth, F. Harms-Watzenberg, and H. D. Baehr, Proc. 20th DKV-Tagungsbericht, Vol. II (Heidelberg, Germany, 1993), pp. 167-181.

  30. Wagner W., Pruss A. (2002). J. Phys. Chem. Ref. Data 31:387

    Article  ADS  Google Scholar 

  31. Rumelhart D.E., McClelland J.L. (1986) Parallel Distributed Processing: Exploration in the Microstructure of Cognition. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Richon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scalabrin, G., Bettio, L., Marchi, P. et al. An Extended Equation of State Modeling Method I. Pure Fluids. Int J Thermophys 27, 1281–1318 (2006). https://doi.org/10.1007/s10765-006-0111-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0111-9

Keywords

Navigation