Skip to main content
Log in

Effect of Moisture on the Thermal Conductivity of a Cementitious Composite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Measurements of the thermal conductivity of a cement-based composite material are performed as a function of moisture content from a dry state to a fully water-saturated state using an impulse technique. Then, the obtained data are analyzed using Brugemann and Wiener homogenization formulas. The validity of applied homogenization techniques is assessed comparing the measured and calculated results. On the basis of the experimental data and the homogenization analyses, the effects of total pore volume, pore distribution, and moisture content on the thermal conductivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lide D.R., ed., In CRC Handbook of Chemistry and Physics, 79th Ed. (CRC Press, Boca Raton, Florida, 1998).

  2. Černý R., Rovnaníková P., (2002). Transport Processes in Concrete. Spon Press, London

    Google Scholar 

  3. Neville A.M., (1973). Properties of Concrete. Pitman, London

    Google Scholar 

  4. Bažant Z.P., Kaplan M.F., (1996). Concrete at High Temperatures: Material Properties and Mathematical Models. Longman, Harlow

    Google Scholar 

  5. IEA-Annex XIV, Condensation and Energy, Vol. 3, Material Properties (International Energy Agency, Leuven, 1991).

  6. Černý R., Maděra J., Poděbradská J., Toman J., Drchalová J., KleČka T., Jurek K., Rovnaníková P., (2000). Cem. Concr. Res. 30:1267

    Article  Google Scholar 

  7. Toman J., Černý R., (2001). Acta Polytechnica 41:8

    Google Scholar 

  8. Grunewald J., (2000). DELPHIN 4.1 – Documentation, Theoretical Fundamentals. TU Dresden, Dresden

    Google Scholar 

  9. Christensen R.M., (1979). Mechanics of Composite Materials. Wiley, New York

    Google Scholar 

  10. Sihvola A., (1999). Electromagnetic Mixing Formulas and Applications. The Institution of Electrical Engineers, London

    Google Scholar 

  11. Ogacho A.A., Aduda B.O., Nyongesa F.W., (2003). J. Mater. Sci. 38:2293

    Article  Google Scholar 

  12. Smith D.S., Fayette S., Grandjean S., Martin C., (2003). J. Am. Ceram. Soc. 86:105

    Article  Google Scholar 

  13. Felske J.D., (2004). Int. J. Heat Mass Transfer 47:3453

    Article  MATH  Google Scholar 

  14. Macedo F., Ferreira J.A., (2003). Rev. Sci. Instrum. 74:828

    Article  ADS  Google Scholar 

  15. Polder D., Van Santen J.H., (1946). Physica 12:257

    Article  ADS  Google Scholar 

  16. Lord Rayleigh, (1892). Phil. Mag. 34:481

    Google Scholar 

  17. Wiener O., (1912). Abh. D. Leipz. Akad. 32:509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Černý.

Additional information

Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mňahončáková, E., Jiřičková, M., Pavlík, Z. et al. Effect of Moisture on the Thermal Conductivity of a Cementitious Composite. Int J Thermophys 27, 1228–1240 (2006). https://doi.org/10.1007/s10765-006-0073-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0073-y

Keywords

Navigation