Skip to main content
Log in

Speeds of Sound and Isentropic Compressibilities of n-Alkoxyethanols and Polyethers with Propylamine at 298.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The speeds of sound (u) have been measured at 298.15 K and atmospheric pressure, as a function of composition for seven binary liquid mixtures of propylamine (CH3CH2CH2NH2, PA) + ethylene glycol monomethyl ether (2-methoxyethenol, CH3(OC2H4)OH, EGMME); + diethylene glycol monomethyl ether [{2-(2-methoxyethoxy)ethanol}, CH3(OC2H4)2OH, Di-EGMME]; + triethylene glycol monomethyl ether [{2-(2-(2-methoxyethoxy)ethoxy) ethanol}, CH3(OC2H4)3OH, Tri-EGMME]; + diethylene glycol monoethyl ether [{2-(2-ethoxyethoxy)ethanol}, C2H5(OC2H4)2OH, Di-EGMEE]; + diethylene glycol monobutyl ether [{2-(2-butoxyethoxy) ethanol}, C4H9(OC2H4)2OH, Di-EGMBE]; + diethylene glycol diethyl ether [bis(2-ethoxyethyl)ether, C2H5 (OC2H4)2 OC2H5, DEGDEE]; and + diethylene glycol dibutyl ether [bis(2-butoxyethyl) ether, C4H9(OC2H4)2OC4 H9; DEGDBE] using a Nusonic velocimeter based on the sing–around technique. These values have been combined with densities derived from excess molar volumes to obtain estimates of the molar isentropic compressibility K S,m, and their excess values \(K_{\rm S,m}^{\rm E}\). The \(K_{\rm S,m}^{\rm E}\) values are shown to be negative for all mixtures over the entire composition range. The deviations u D of the speeds of sound from the values calculated for ideal mixtures have been obtained for all estimated values of mole fraction x1. The change of \(K_{\rm S,m}^{\rm E}\) and u D with composition and the number of –OC2H4 – units in the alkoxyethanol are discussed with a view to understand some of the molecular interactions present in alkoxyethanol – propylamine mixtures.Also, theoretical values of the molar isentropic compressibility of K S,m and of the speed of sound u D have been calculated using the Prigogine-Flory-Patterson (PFP) theory with the van der Waals (vdW) potential energy model, and the results have been compared with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pal A., Sharma S., and Kumar H. (2000). Can. J. Chem. 78:427

    Article  Google Scholar 

  2. Pal A., and Bhardwaj R.K. (2002). Can. J. Chem. 80:467

    Article  Google Scholar 

  3. Douheret G., Reis J.C.R., Davis M.I., Fjellanger I.J., and Hoiland H. (2004). Phys. Chem. Chem. Phys. 6:784

    Article  Google Scholar 

  4. Sastry N.V., and Patel S.R. (2000). Int. J. Thermophys. 21:1153

    Article  Google Scholar 

  5. Pal A., and Kumar H. (2004). J. Pure Appl. Ultrason. 26:67

    Google Scholar 

  6. Oswal S.L., Prajapati K.D., Ghael N.Y., and Ijardar S.P. (2004). Fluid Phase Equilib. 218:131

    Article  Google Scholar 

  7. Riddick J.A., Bunger W.B., and Sakano T.K. (1986). Organic Solvents: Physical Properties and Methods of Purification, Vol II. John Wiley, New York

    Google Scholar 

  8. Pal A., Kumar H., Kumar A., and Dass G. (1999). Fluid Phase Equilib. 166:245

    Article  Google Scholar 

  9. Oswal S.L., Oswal P., Gardas R.L., Patel S.G., and Shinde R.G. (2004). Fluid Phase Equilib. 216:33

    Article  Google Scholar 

  10. Goralski P., Wasiak M., and Bald A. (2002). J. Chem. Eng. Data 47:83

    Article  Google Scholar 

  11. Douheret G., Pal A., and Davis M.I. (1990). J. Chem. Thermodyn. 22:99

    Article  Google Scholar 

  12. Roux G., Perron G., and Desnoyers J.E. (1978). J Solution Chem. 7:639

    Article  Google Scholar 

  13. Vankatesulu D., Vankatesu P., and Rao M.V.P. (1997). J. Chem. Eng. Data 42:356

    Google Scholar 

  14. Douheret G., Lagoi P., Davis M.I., Ratliff J.L., Ulloa J., and Hoiland H. (1995). J. Chem. Soc. Faraday Trans. 91:2291

    Article  Google Scholar 

  15. Cobos J.C., Doctoral Thesis (Universidad de Valladolid, Spain, 1987).

  16. Douheret G., Salgado C., Davis M.I., and Loya I. (1992). Thermochim Acta 207:313

    Article  Google Scholar 

  17. Serna A., Garcia de le Fuente I., Gonzalez J.A., and Cobos J.C. (1997). Fluid Phase Equilib. 133:187

    Article  Google Scholar 

  18. Roux G., Perron G., and Desnoyers J.E. (1978). Can. J. Chem. 56:2808

    Article  Google Scholar 

  19. Caramona F.J., Arroyo F.J., Garcia de la Fuente G.I., Gonzalez J.A., and Cobos J.C. (1997). Can. J. Chem. 77:1608

    Article  Google Scholar 

  20. Sadek H., Tadors T.F., and EL-Harakany A.A. (1971). Electrochim. Acta 16:339

    Article  Google Scholar 

  21. Garnsey R., Boe R.J., Mahoney R., and Litoviz J.A. (1969). J. Chem. Phys. 50:5222

    Article  Google Scholar 

  22. Del Grasso V.A. and Madar C.W. (1972). J. Acoust. Soc. Am 52:1442

    Article  Google Scholar 

  23. Singh Y.P., Ph. D. Thesis (University of Kurukshetra, India, 1996).

  24. Pal A., and Singh Y.P. (1997). Indian J. Pure Appl. Phys. 35:310

    Google Scholar 

  25. Benson G.C., and Kiyohara O. (1979). J. Chem. Thermodyn. 11:1061

    Article  Google Scholar 

  26. Prigogine I. (1957). The Molecular Theories of Solutions. North Holland Publishing Co., Amsterdam

    Google Scholar 

  27. Flory P.J. (1965). J. Am. Chem. Soc. 87:1833

    Article  Google Scholar 

  28. Bondi A. (1968). Physical Properties of Molecular Liquids and Gases. John Wiley and Sons Inc., New York

    Google Scholar 

  29. Oswal A. (1990). Acoust. Lett. 14:17

    Google Scholar 

  30. Pal A., and Dass G. (2001). Z. Phys. Chem. 215:943

    Google Scholar 

  31. Flory P.J., and Abe A. (1965). J. Amer. Chem. Soc 87:1838

    Article  Google Scholar 

  32. Flory P.J. (1970). Discuss. Faraday Soc 49:7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amalendu Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, A., Kumar, A. & Kumar, H. Speeds of Sound and Isentropic Compressibilities of n-Alkoxyethanols and Polyethers with Propylamine at 298.15 K. Int J Thermophys 27, 777–793 (2006). https://doi.org/10.1007/s10765-006-0047-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0047-0

Keywords

Navigation