Skip to main content
Log in

Material Effect and Steam Explosion at High Temperature (T > 2300 K)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In the frame of nuclear power plant safety, the interaction of molten corium (mixture of materials coming from a power plant) with water can generate dynamic loading of the surrounding structures. This phenomenon is called the steam explosion. Many experiments have been performed in the KROTOS facility with simulation materials (Al2O3) and prototypical materials (U,Zr)O2, and different behaviors attributed to a ‘material effect’ have been observed. Alumina melts produced spontaneous energetic steam explosions, whereas explosions with corium melts (80% UO2–20% ZrO2) must be triggered and are less energetic. These differences may be partly attributed to the formation of meta-stable gamma alumina and the ability of liquid alumina to dissolve part of the water, acting like an internal trigger. These results mean that alumina is probably not an adequate simulation of the corium for steam explosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Cognet G. Laffont C. Jegou J. Pierre C. Journeau M. Cranga F. Sudreau (1999) OECD Workshop on Ex-Vessel Debris Coolability Karlsruhe Germany 156–158

    Google Scholar 

  2. G. Cognet J. M. Seiler I. Szabo J. C. Latché B. Spindler J. M. Humbert (1997) Rev. Gén. Nucl. 1 38

    Google Scholar 

  3. G. Cognet J. M. Veteau P. Eberle J. M. Seiler (1997) Nuthos –5 Meeting Beijing China 5-1–5-8

    Google Scholar 

  4. P. Piluso C. Journeau E. Boccaccio J. M. Bonnet P. Fouquart J.F. Haquet C. Jégou D. Magallon (2002) Proc. Nuclear Energy for New Europe Kranjska Gora Slovenia

    Google Scholar 

  5. D. Magallon, I. Huhtiniemi, P. Dietrich, G. Berthoud, M. Valette, W. Schütz, H. Jacobs, N. Kolev, G. Graziosi, R. Seghal, M. Bürger, M. Buck, E. V. Berg, G. Colombo, B. Turland, G. Dobson, and D. Monhardt, MFCI Project – Final Report (4th Europ. Framework Programme, EUR, Contract-CT9292-004, 2000).

  6. M. L. Corradini B. J. Kim M. D. Oh (1988) Proc. Nucl. Energy 22 1 Occurrence Handle10.1016/0149-1970(88)90004-2

    Article  Google Scholar 

  7. A. W. Cronemberg and G. R. Benz, NUREG/CR-0245, TREE-1242 (1978).

  8. F. J. Walford (1969) Int. J. Heat Mass Tran. 12 1621 Occurrence Handle10.1016/0017-9310(69)90096-9

    Article  Google Scholar 

  9. L. C. Steven L. C. Witte (1973) Int. J. Heat Mass Trans. 16 669 Occurrence Handle10.1016/0017-9310(73)90231-7

    Article  Google Scholar 

  10. B. Kim M. L. Corradini (1984) Fifth Int. Meeting on Thermal Nuclear POWER PLANT Karlsruhe Germany

    Google Scholar 

  11. S. J. Board R. W. Hall R. S. Hall (1975) Nature 254 319 Occurrence Handle10.1038/254319a0

    Article  Google Scholar 

  12. H. Hohmann D. Magallon H. Schins A. Yerkess (1995) Nucl. Eng. Des. 155 391 Occurrence Handle10.1016/0029-5493(94)00884-2

    Article  Google Scholar 

  13. I. Huhtiniemi D. Magallon H. Hohman (1999) Nucl. Eng. Des. 189 379 Occurrence Handle10.1016/S0029-5493(98)00269-6

    Article  Google Scholar 

  14. I. Huhtiniemi H. Hohmann D. Magallon (1997) Proc. OECD/CSNI Specialist Meeting on Fuel-Coolant Interaction Tokai-Mura Japan

    Google Scholar 

  15. I. Huhtiniemi D. Magallon (2001) Nucl. Eng. Des. 204 391 Occurrence Handle10.1016/S0029-5493(00)00319-8

    Article  Google Scholar 

  16. Powder Diffraction File Search Manual (Fink), Inorganic Phases – International Centre for Diffraction Data (1982).

  17. K. Welfers, “Oxides and Hydroxides of Aluminum,” Alcoa Technical Paper No. 19 (Alcoa Lab, 1987).

  18. S. Soled (1983) J. Catal. 81 252 Occurrence Handle10.1016/0021-9517(83)90163-X

    Article  Google Scholar 

  19. B. Glorieux (2000) Mesure de la densité, de la tension de surface et de la viscosité de l’alumine liquide en fonction de la température et de l’environnement Thèse de l’Université d’Orléans France

    Google Scholar 

  20. J. P. Coutures J. M. Dechauvelle R. Munoz G. Urbain (1980) Rev. Int. Hautes Temp. Refract. 17 351

    Google Scholar 

  21. R. McPherson (1973) J. Mat. Sci. 8 851 Occurrence Handle10.1007/BF00553735

    Article  Google Scholar 

  22. V. Jarayam C. G. Levi (1989) Acta. Metall. 37 569 Occurrence Handle10.1016/0001-6160(89)90240-X

    Article  Google Scholar 

  23. J. H. Kim I. K. Park B. T. Min S. W. Hong Y. S. Shin J. H. Song H. D. Kim (2004) Proc. ICAPP ’04 Pittsburgh Pennsylvania

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Piluso.

Additional information

Paper presented at the Seventh International Workshop on Subsecond Thermophysics, October 6–8, 2004, Orléans, France.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piluso, P., Trillon, G. & Magallon, D. Material Effect and Steam Explosion at High Temperature (T > 2300 K). Int J Thermophys 26, 1095–1114 (2005). https://doi.org/10.1007/s10765-005-6687-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-6687-7

Keywords

Navigation