Skip to main content
Log in

Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Carbon multi-walled nanotubes (C-MWNTs) and alternatively carbon double-walled nanotubes (C-DWNTs) were added in water, following our previous work, in order to enhance the thermal conductivity of this traditional heat transfer fluid. Hexadecyltrimethyl ammonium bromide (CTAB) and Nanosperse AQ were employed as dispersants. The transient hot-wire technique was used for the measurement of the thermal conductivity with an instrument built for this purpose. The absolute uncertainty is better than 2%. The maximum thermal conductivity enhancement obtained was 34% for a 0.6% volume C-MWNT suspension in water with CTAB. All measurements were made at ambient temperature. In an attempt to evaluate and explain the experimental results, information about the microstructure of the suspensions is needed. The findings of these investigations are presented here along with the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. S. Iijima (1991) Nature 354 56 Occurrence Handle10.1038/354056a0

    Article  Google Scholar 

  2. Y. Gao Y. Bando (2002) Nature 415 599 Occurrence Handle10.1038/415599a

    Article  Google Scholar 

  3. S.J. Tans A.R.M Verschueren C. Dekker (1998) Nature 393 49 Occurrence Handle10.1038/29954

    Article  Google Scholar 

  4. X. Qin X.P. Gao H. Liu H.T. Yuan D.Y. Yan W.L. Gong D.Y. Song (2000) Electrochem. Solid-State Lett. 3 532 Occurrence Handle10.1149/1.1391200

    Article  Google Scholar 

  5. M.J. O’Connell P. Boul L.M. Ericson C. Huffman Y. Wang E. Haroz C. Kuper J. Tour K.D. Ausman R.E. Smalley (2001) Chem. Phys. Lett. 342 265 Occurrence Handle10.1016/S0009-2614(01)00490-0

    Article  Google Scholar 

  6. H. Dai N. Franklin J. Han (1998) Appl. Phys. Lett. 73 1508 Occurrence Handle10.1063/1.122188

    Article  Google Scholar 

  7. P. Kim C.M. Lieber (1999) Science 286 2148 Occurrence Handle10.1126/science.286.5447.2148 Occurrence Handle10591644

    Article  PubMed  Google Scholar 

  8. S. Berber Y.-K. Kwon D. Tomanek (2000) Phys. Rev. Lett. 84 4613 Occurrence Handle10.1103/PhysRevLett.84.4613 Occurrence Handle10990753

    Article  PubMed  Google Scholar 

  9. M.J. Assael C.-F. Chen I. Metaxa W.A. Wakeham (2004) Int. J. Thermophys. 25 971 Occurrence Handle10.1023/B:IJOT.0000038494.22494.04

    Article  Google Scholar 

  10. Assael M.J., C.-F. Chen, Metaxa I.N., and Wakeham W.A., (2003). Proc. 27th Int. Therm. Conduct. Conf., Tennessee.

  11. L. Meunier K. Ballerat-Busserolles C. Roux-Desgranges A.H. Roux (1998) J. Therm. Anal. 54 271 Occurrence Handle10.1023/A:1010162112407

    Article  Google Scholar 

  12. Y. Ando X. Zhao H. Shimoyama (2001) Carbon 39 569 Occurrence Handle10.1016/S0008-6223(00)00162-7

    Article  Google Scholar 

  13. I. Loa (2003) J. Raman Spectrosc. 34 611 Occurrence Handle10.1002/jrs.1035

    Article  Google Scholar 

  14. W. Li H. Zhang C. Wang Y. Zhang L. Xu K. Zhu S. Xie (1997) Appl. Phys. Lett. 70 2684 Occurrence Handle10.1063/1.118993

    Article  Google Scholar 

  15. Arvanitidis J., D. Christo.los, Kourouklis G.A., Metaxa I., and Assael M.J., in preparation.

  16. J. Liu A.G. Rinzler H. Dai J.H. Hafner R.K. Bradley P.J. Boul A. Lu T. Iverson K. Shelimov C.B. Huffman F. Rodriguez-Macias Y-S. Shon T.R. Lee D.T. Colbert R.E. Smalley (1998) Science 280 1253 Occurrence Handle10.1126/science.280.5367.1253 Occurrence Handle9596576

    Article  PubMed  Google Scholar 

  17. S.U.S. Choi Z.G. Zhang W. Yu F.E. Lockwood E.A. Grulke (2001) Appl. Phys. Lett. 79 2252 Occurrence Handle10.1063/1.1408272

    Article  Google Scholar 

  18. H. Xie H. Lee W. Youn M. Choi (2003) J. Appl. Phys. 94 4967 Occurrence Handle10.1063/1.1613374

    Article  Google Scholar 

  19. J.A. Eastman S.U.S Choi S. Li L.J. Thompson S. Lee (1997) Proc. Symp. Nanophase and Nanocomposite Materials II, Mater. Res. Soc., Boston 457 3

    Google Scholar 

  20. S. Lee S.U.S Choi S. Li J.A. Eastman (1999) J. Heat Transfer, Trans. ASME 121 280

    Google Scholar 

  21. X. Wang X. Xu S.U.S Choi (1999) J. Thermophys. Heat Transfer 13 474

    Google Scholar 

  22. Y. Xuan Q. Li (2000) Int. J. Heat Fluid Flow 21 58 Occurrence Handle10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  23. J.A. Eastman S.U.S Choi S. Li W. Yu L.J. Thompson (2001) Appl. Phys. Lett. 78 718 Occurrence Handle10.1063/1.1341218

    Article  Google Scholar 

  24. H. Xie J. Wang T. Xi Y. Liu F. Ai (2002) J. Mater. Sci. Lett. 21 1469 Occurrence Handle10.1023/A:1020060324472

    Article  Google Scholar 

  25. H. Xie J. Wang T. Xi Y. Liu F. Ai Q. Wu (2002) J. Appl. Phys. 91 4568 Occurrence Handle10.1063/1.1454184

    Article  Google Scholar 

  26. S.-K. Das N. Putra P. Thiesen W. Roetzel (2003) J. Heat Transfer 125 567 Occurrence Handle10.1115/1.1571080

    Article  Google Scholar 

  27. H.E. Patel S.K. Das T. Sundararajan A. Sreekumaran Nair B. George T. Pradeep (2003) Appl. Phys. Lett. 83 2931 Occurrence Handle10.1063/1.1602578

    Article  Google Scholar 

  28. Choi S.U.S, Private Communication, Senior Engineer, Argonne Nat. Lab., Argonne Illinois (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Assael.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assael, M.J., Metaxa, I.N., Arvanitidis, J. et al. Thermal Conductivity Enhancement in Aqueous Suspensions of Carbon Multi-Walled and Double-Walled Nanotubes in the Presence of Two Different Dispersants. Int J Thermophys 26, 647–664 (2005). https://doi.org/10.1007/s10765-005-5569-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-5569-3

Keywords

Navigation