Skip to main content
Log in

Method for Estimating the Dielectric Constant of Natural Gas Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A method has been developed for calculating the static dielectric constant (relative permittivity) of fluid mixtures, with an emphasis on natural gas. The dielectric constant is calculated as a function of temperature, density, and composition; the density is calculated with a fundamental mixture equation of state. Theory-based correlations were developed for the dielectric constant of all significant components of natural gas, including not only light hydrocarbons but also gases such as nitrogen and carbon dioxide. In many cases, these correlations took advantage of new, highly accurate data measured in cross capacitors. For mixtures, the pure-component values are combined as proposed by Harvey and Prausnitz; this produces better results than the traditional mixing rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Jaeschke (2002) Thermochim. Acta 382 37

    Google Scholar 

  • M. Jaeschke P. Schley R. Janssen-van Rosmalen (2002) Int. J. Thermophys. 23 1013

    Google Scholar 

  • B. A. Younglove J. F. Ely (1987) J. Phys. Chem. Ref. Data 16 577 Occurrence Handle1987JPCRD..16..577Y

    ADS  Google Scholar 

  • M. R. Moldover T. J. Buckley (2001) Int. J. Thermophys. 22 859

    Google Scholar 

  • J. W. Schmidt M. R. Moldover (2003) Int. J. Thermophys. 24 375

    Google Scholar 

  • A. H. Harvey J. M. Prausnitz (1987) J. Solution Chem. 16 857

    Google Scholar 

  • C. J. F. Böttcher (1973) Theory of Electric Polarization EditionNumber2 Elsevier Amsterdam

    Google Scholar 

  • R. P. Bell (1942) Trans. Faraday Soc. 38 422

    Google Scholar 

  • A. D. Buckingham J. A. Pople (1955) Trans. Faraday Soc. 51 1029

    Google Scholar 

  • M. Lallemand D. Vidal (1977) J. Chem. Phys. 66 4776 Occurrence Handle1977JChPh..66.4776L

    ADS  Google Scholar 

  • R. D. McCarty V. D. Arp (1990) Adv. Cryog. Eng. 35 1465

    Google Scholar 

  • J. Huot T. K. Bose (1991) J. Chem. Phys. 95 2683 Occurrence Handle1991JChPh..95.2683H

    ADS  Google Scholar 

  • V. V. Pashkov M. P. Lobko V. S. Marinin (1987) Sov. J. Low Temp. Phys. 13 70

    Google Scholar 

  • R. S. Katti R. T Jacobsen R. B. Stewart M. Jahangiri (1986) Adv. Cryog. Eng. 31 1189

    Google Scholar 

  • W. P. Pan M. H. Mady R. C. Miller (1975) AIChE J. 21 283

    Google Scholar 

  • S. P. Singh R. C. Miller (1978) J. Chem. Thermodyn. 10 747

    Google Scholar 

  • C. Tegeler R. Span W. Wagner (1999) J. Phys. Chem. Ref. Data 28 779 Occurrence Handle1999JPCRD..28..779T

    ADS  Google Scholar 

  • R. L. Amey R. H. Cole (1964) J. Chem. Phys. 40 146 Occurrence Handle1964JChPh..40..146A

    ADS  Google Scholar 

  • D. Vidal L. Guengant P. Malbrunot J. Vermesse (1989) Mol. Phys. 68 737 Occurrence Handle1989MolPh..68..737V

    ADS  Google Scholar 

  • E. W. Lemmon and R. Span, submitted to J. Chem. Eng. Data.

  • J. Elsken Particlevan der J. C. F. Michielsen (1985) Chem. Phys. Lett. 115 230 Occurrence Handle1985CPL...115..230V

    ADS  Google Scholar 

  • J. W. Stewart (1964) J. Chem. Phys. 40 3297 Occurrence Handle1964JChPh..40.3297S

    ADS  Google Scholar 

  • B. A. Younglove (1982) J. Phys. Chem. Ref. Data 11 (Suppl. 1) 1

    Google Scholar 

  • J. F. Ely G. C. Straty (1974) J. Chem. Phys. 61 1480 Occurrence Handle1974JChPh..61.1480E

    ADS  Google Scholar 

  • R. Span E. W. Lemmon R. T. Jacobsen W. Wagner A. Yokozeki (2000) J. Phys Chem. Ref. Data 29 1361 Occurrence Handle2000JPCRD..29.1361S

    ADS  Google Scholar 

  • B. A. Younglove (1972) J. Res. Nat. Bur. Stand. A 76A 37

    Google Scholar 

  • R. Schmidt W. Wagner (1985) Fluid Phase Equilib. 19 175

    Google Scholar 

  • T. Moriyoshi T. Kita Y. Uosaki (1993) Ber. Bunsenges. Phys. Chem. 97 589

    Google Scholar 

  • J. Obriot J. Ge T. K. Bose J.-M. St-Arnaud (1993) Fluid Phase Equilib. 86 315

    Google Scholar 

  • E. F. May, M. R. Moldover, and J. W. Schmidt, Int. J. Thermophys., in press.

  • R. Span W. Wagner (1996) J. Phys. Chem. Ref. Data 25 1509 Occurrence Handle1996JPCRD..25.1509S

    ADS  Google Scholar 

  • G. C. Straty R. D. Goodwin (1973) Cryogenics 13 712

    Google Scholar 

  • T. Vienravee R. C. Miller (1982) J. Chem. Thermodyn. 14 361

    Google Scholar 

  • J.-M. St-Arnaud A. Hourri T. K. Bose D. Ingrain (1993) High Temp. High Press 25 301

    Google Scholar 

  • P. Malbrunot J. Vermesse D. Vidal T. K. Bose A. Hourri J. M. St-Arnaud (1994) Fluid Phase Equilib. 96 173

    Google Scholar 

  • U. Setzmann W. Wagner (1991) J. Phys. Chem. Ref. Data 20 1061 Occurrence Handle10.1063/1.555898 Occurrence Handle1991JPCRD..20.1061S

    Article  ADS  Google Scholar 

  • T. K. Bose R. H. Cole (1971) J. Chem. Phys. 54 3829 Occurrence Handle1971JChPh..54.3829B

    ADS  Google Scholar 

  • W. M. Haynes (1985) Cryogenics 25 68

    Google Scholar 

  • J. Smukala R. Span W. Wagner (2000) J. Phys. Chem. Ref. Data 29 1053 Occurrence Handle2000JPCRD..29.1053S

    ADS  Google Scholar 

  • L. A. Weber (1976) J. Chem. Phys. 65 446 Occurrence Handle1976JChPh..65..446W

    ADS  Google Scholar 

  • D. Bücker and W. Wagner, J. Phys. Chem. Ref. Data (in press).

  • R. T. Thompson ParticleJr. R. C. Miller (1980) Adv. Cryog. Eng. 25 698

    Google Scholar 

  • C. C. Luo R. C. Miller (1981) Cryogenics 21 85

    Google Scholar 

  • W. M. Haynes B. A. Younglove (1982) Adv. Cryog. Eng. 27 883

    Google Scholar 

  • W. M. Haynes (1983) J. Chem. Thermodyn. 15 419

    Google Scholar 

  • E. W. Lemmon, M. O. McLinden, and W. Wagner, to be submitted to J. Phys. Chem. Ref. Data.

  • H. E. Watson K. L. Ramaswamy (1936) Proc. Roy. Soc. A 156 144 Occurrence Handle1936RSPSA.156..144W

    ADS  Google Scholar 

  • W. M. Haynes (1983) J. Chem. Thermodyn. 15 801

    Google Scholar 

  • D. Bücker and W. Wagner, J. Phys. Chem. Ref. Data (in press).

  • W. M. Haynes (1983) J. Chem. Eng. Data 28 367

    Google Scholar 

  • W. G. S. Scaife C. G. R. Lyons (1980) Proc. R. Soc. Lond. A 370 193 Occurrence Handle1980RSPSA.370..193S

    ADS  Google Scholar 

  • R. Span W. Wagner (2003) Int. J. Thermophys. 24 41

    Google Scholar 

  • F. I. Mopsik (1969) J. Chem. Phys. 50 2559 Occurrence Handle1969JChPh..50.2559M

    ADS  Google Scholar 

  • E. W. Lemmon, M. O. McLinden, and M. L. Huber, Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 7.0 (Nat. Inst. Stands. Technol., Gaithersburg, Maryland, 2002).

  • R. D. Nelson, Jr., D. R. Lide, Jr., and A. A. Maryott, Selected Values of Electric Dipole Moments for Molecules in The Gas Phase, National Standard Reference Data Series, NSRDS-NBS 10 (U.S. Government Printing Office, Washington, D.C., 1967).

  • W. Hüttner W. Majer H. Kästle (1989) Mol. Phys. 67 131 Occurrence Handle1989MolPh..67..131H

    ADS  Google Scholar 

  • W. A. Herrebout B. J. Veken Particlevan der A. Wang J. R. Durig (1995) J. Phys. Chem. 99 578

    Google Scholar 

  • A. Salam M. S. Deleuze (2002) J. Chem. Phys. 116 1296 Occurrence Handle2002JChPh.116.1296S

    ADS  Google Scholar 

  • A. Salam, Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, personal communication (2004).

  • K. K. Irikura and A. H. Harvey, unpublished.

  • W. Cencek K. Szalewicz B. Jeziorski (2001) Phys. Rev. Lett. 86 5675 Occurrence Handle2001PhRvL..86.5675C

    ADS  Google Scholar 

  • J. Rychlewski (1980) Mol. Phys. 41 833 Occurrence Handle1980MolPh..41..833R

    ADS  Google Scholar 

  • M. B. Ewing D. D. Royal (2002) J. Chem. Thermodyn. 34 1089

    Google Scholar 

  • M. B. Ewing D. D. Royal (2002) J. Chem. Thermodyn. 34 1985

    Google Scholar 

  • W. M. Haynes (1986) Adv. Cryog. Eng. 31 1199

    Google Scholar 

  • C. P. Smyth K. B. McAlpine (1934) J. Am. Chem. Soc. 56 571

    Google Scholar 

  • M. Kubo (1935) Sci. Pap. Inst. Phys. Chem. Res. Jpn. 26 242

    Google Scholar 

  • J. V. Champion G. H. Meeten C. D. Whittle (1970) Trans. Faraday Soc. 66 2671

    Google Scholar 

  • R. H. Stokes (1973) J. Chem. Thermodyn. 5 379

    Google Scholar 

  • F. I. Mopsik (1967) J. Res. Nat. Bur. Stand. A 71A 287

    Google Scholar 

  • G. Oster (1946) J. Am. Chem. Soc. 68 2036

    Google Scholar 

  • P. Wang A. Anderko (2001) Fluid Phase Equilib. 186 103

    Google Scholar 

  • E. F. May R. C. Miller A. R. H. Goodwin (2002) J. Chem. Eng. Data 47 102

    Google Scholar 

  • W. M. Haynes (1983) J. Chem. Thermodyn. 15 903

    Google Scholar 

  • W. M. Haynes R. D. McCarty (1983) Cryogenics 23 421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Harvey.

Additional information

Paper presented at the Fifteenth Symposium on Thermophysical Properties, June 22--27, 2003, Boulder, Colorado, U.S.A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, A.H., Lemmon, E.W. Method for Estimating the Dielectric Constant of Natural Gas Mixtures. Int J Thermophys 26, 31–46 (2005). https://doi.org/10.1007/s10765-005-2351-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-2351-5

Keywords

Navigation