International Journal of Primatology

, Volume 39, Issue 4, pp 685–704 | Cite as

Increased Frequency of Intergroup Encounters in Wild Bonobos (Pan paniscus) Around the Yearly Peak in Fruit Abundance at Wamba

  • Tetsuya SakamakiEmail author
  • Heungjin Ryu
  • Kazuya Toda
  • Nahoko Tokuyama
  • Takeshi Furuichi


Intergroup interactions in primates vary from nonagonistic to severely aggressive. Food resources and fertile females cause intergroup aggression when groups defend resources and mates from other groups. Peaceful intermingling during intergroup encounters is rare but has been reported in several primates, including bonobos (Pan paniscus). Although intergroup encounters in bonobos occur at both nonprovisioned and provisioned sites, provisioning may be one factor responsible for frequent intergroup encounters. We studied intergroup encounters between one bonobo group (PE) and its neighboring groups, one semihabituated and two habituated groups, under nonprovisioned conditions in 2010–2015 at Wamba, Democratic Republic of Congo. We examined whether fruit abundance and females with sexual swellings influenced encounter frequency. PE group encountered the other groups on 7.1 days (mean, range: 0–19) per month. Up to four different groups met simultaneously at one location. Encounter frequency was highest around the yearly peak in fruit abundance, suggesting that reduced food competition is linked to increased encounter frequency. During periods of relatively low fruit abundance, the probability of an encounter was higher when a higher number of adult females with maximum sexual swellings were present, suggesting that the attractiveness of females with sexual swellings promoted group encounters during periods of relatively low fruit abundance. These findings suggest that both competition for food and the availability of females with sexual swellings influence encounter frequency in bonobos.


Food competition Intergroup relationship Luo scientific reserve Multigroup association Seasonality Sexual swelling 



We thank the Ministry of Scientific Research and Technology, DRC and the Centre de Recherche en Ecologie et Foresterie for research permits and scientific collaboration. We also thank local assistants at Wamba, members of the Wamba Committee for Bonobo Research, and the Primate Research Institute (PRI) of Kyoto University for assistance. We are grateful to Dr. T. Matsuzawa, Dr. H. Hirai, Dr. T. Yumoto, and Dr. G. Idani for their continuous support. We appreciate Dr. M. Mulavwa’s and the late K. Yangozene’s efforts on the habituation of neighboring groups, and would like to express our gratitude to Dr. E. V. Lonsdorf, Dr. J. M. Setchell, Dr. M. Nakamura, Dr. A. MacIntosh, and five anonymous referees for useful comments. The study was financially supported by the Japanese Ministry of the Environment Global Environment Research Fund (D-1007 to T. Furuichi); the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (26257408 and 22255007 to T. Furuichi, 25304019 to C. Hashimoto, and 16H02753 and 25257407 to T. Yumoto); the JSPS Core-to-Core Program (2009–2011, 2012–2014, and 2015–2017 to T. Furuichi); the JSPS HOPE Project of the PRI of Kyoto University (to T. Matsuzawa); a US Fish and Wildlife Service Assistance Award (96200-0-G017 to African Wildlife Foundation); a Ministry of Education, Culture, Sports, Science, and Technology in Japan Special Grant (“Human evolution”); and the JSPS Strategic Young Overseas Visits Program for Accelerating Brain Circulation (S2508).

Supplementary material

10764_2018_58_MOESM1_ESM.docx (20 kb)
ESM 1 (DOCX 19 kb)


  1. Anderson, C. M. (1981). Intertroop relations of chacma baboon (Papio ursinus). International Journal of Primatology, 2, 285–310.CrossRefGoogle Scholar
  2. Burnham, K. P., Anderson, D. R., & Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23–35.CrossRefGoogle Scholar
  3. Chapais, B. (2011). The deep social structure of humankind. Science, 331, 1276–1277.CrossRefPubMedGoogle Scholar
  4. Cheney, D. L. (1981). Intergroup encounters among free-ranging vervet monkeys. Folia Primatologica, 35, 124–146.CrossRefGoogle Scholar
  5. Cheney, D. L. (1987). Interactions and relationships between groups. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 267–281). Chicago: University of Chicago Press.Google Scholar
  6. Douglas, P. H., Hohmann, G., Murtagh, R., Thiessen-Bock, R., & Deschner, T. (2016). Mixed messages: Wild female bonobos show high variability in the timing of ovulation in relation to sexual swelling patterns. BMC Evolutionary Biology, 16, 140–156.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fashing, P. J. (2001). Male and female strategies during intergroup encounters in guerezas (Colobus guereza): Evidence for resource defense mediated through males and a comparison with other primates. Behavioral Ecology and Sociobiology, 50, 219–230.CrossRefGoogle Scholar
  8. Fox, J., & Weisberg, S. (2011). An R companion to applied regression, second edition. Thousand oaks CA: SAGE. Retrieved from
  9. Furuichi, T. (1987). Sexual swelling, receptivity, and grouping of wild pygmy chimpanzee females at Wamba, Zaire. Primates, 28, 309–318.CrossRefGoogle Scholar
  10. Furuichi, T. (1989). Social interactions and the life history of female Pan paniscus in Wamba, Zaïre. International Journal of Primatology, 10, 173–197.CrossRefGoogle Scholar
  11. Furuichi, T. (1992). The prolonged estrus of females and factors influencing mating in a wild group of bonobos (Pan paniscus) in Wamba, Zaire. In N. Itoigawa, Y. Sugiyama, G. P. Sackett, & R. K. R. Thompson (Eds.), Topics in primatology (Vol. 2: Behavior, ecology, and conservation, pp. 179–199). Tokyo: University of Tokyo Press.Google Scholar
  12. Furuichi, T. (2009). Factors underlying party size differences between chimpanzees and bonobos: A review and hypotheses for future study. Primates, 50, 197–209.CrossRefPubMedGoogle Scholar
  13. Furuichi, T., Hashimoto, C., & Tashiro, Y. (2001). Fruit availability and habitat use by chimpanzees in the Kalinzu forest, Uganda: Examination of fallback foods. International Journal of Primatology, 22, 929–945.CrossRefGoogle Scholar
  14. Furuichi, T., Mulavwa, M., Yangozene, K., Yamba-Yamba, M., Motema-Salo, B., Idani, G.’., Ihobe, H., Hashimoto, C., Tashiro, Y., & Mwanza, N. (2008). Relationships among fruit abundance, ranging rate, and party size and composition of bonobos at Wamba. In T. Furuichi & J. Thompson (Eds.), The bonobos: Behavior, ecology, and conservation (pp. 135–149). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  15. Furuichi, T., Idani, G., Ihobe, H., Hashimoto, C., Tashiro, Y., et al (2012). Long-term studies on wild bonobos at Wamba, Luo scientific reserve, D. R. Congo: Towards the understanding of female life history in a male-philopatric species. In P. M. Kappeler & D. P. Watts (Eds.), Long-term field studies of primates (pp. 413–433). Berlin: Springer.CrossRefGoogle Scholar
  16. Furuichi, T., Sanz, C., Koops, K., Sakamaki, T., Ryu, H., et al (2015). Why do wild bonobos not use tools like chimpanzees do? Behaviour, 152, 425–460.CrossRefGoogle Scholar
  17. Gerloff, U., Hartung, B., Fruth, B., Hohmann, G., & Tautz, D. (2011). Intracommunity relationships, dispersal pattern and paternity success in a wild living community of bonobos (Pan paniscus) determined from DNA analysis of faecal samples. Proceedings of the Royal Society B: Biological Sciences, 266, 1189–1195.CrossRefGoogle Scholar
  18. Goodall, J. (1983). Population dynamics during a 15 year period in one community of free-living chimpanzees in the Gombe National Park, Tanzania. Zeitschrift für Tierpsychologie, 61, 1–60.CrossRefGoogle Scholar
  19. Grueter, C. C., & van Schaik, C. P. (2010). Evolutionary determinants of modular societies in colobines. Behavioral Ecology, 21, 63–71.CrossRefGoogle Scholar
  20. Grueter, C. C., Chapais, B., & Zinner, D. (2012). Evolution of multilevel social systems in nonhuman primates and humans. International Journal of Primatology, 33, 1002–1037.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hashimoto, C. (1997). Context and development of sexual behavior of wild bonobos (Pan paniscus) at Wamba, Zaire. International Journal of Primatology, 18, 1–21.CrossRefGoogle Scholar
  22. Hashimoto, C., Furuichi, T., & Takenaka, O. (1996). Matrilineal kin relationship and social behavior of wild bonobos (Pan paniscus): Sequencing the D-loop region of mitochondrial DNA. Primates, 37, 305–318.CrossRefGoogle Scholar
  23. Hashimoto, C., Tashiro, Y., Kimura, D., Enomoto, T., Ingmanson, E. J., Idani, G.'., & Furuichi, T. (1998). Habitat use and ranging of wild bonobos (Pan paniscus) at Wamba. International Journal of Primatology, 19, 1045–1060.CrossRefGoogle Scholar
  24. Hashimoto, C., Tashiro, Y., Hibino, E., Mulavwa, M., Yangozene, K., Furuichi, T., Idani, G.’., & Takenaka, O. (2008). Longitudinal structure of a unit-group of bonobos: Male philopatry and possible fusion of unit-groups. In T. Furuichi & J. Thompson (Eds.), The bonobos: Behavior, ecology, and conservation (pp. 107–119). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  25. Hill, K. R., Walker, R. S., Božičević, M., Eder, J., Headland, T., et al (2011). Co-residence patterns in hunter-gatherer societies show unique human social structure. Science, 331, 1286–1289.CrossRefPubMedGoogle Scholar
  26. Hohmann, G., & Fruth, B. (2002). Dynamics in social organization of bonobos (Pan paniscus). In C. Boesch, G. Hohmann, & L. F. Marchant (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 138–150). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Idani, G. (1990). Relations between unit-groups of bonobos at Wamba, Zaire: Encounters and temporary fusions. African Study Monographs, 11, 153–186.Google Scholar
  28. Idani, G. (2003). The unitgroup of wild bonobos: By instances of inter-unitgroup encounters. Primate Research, 19, 23–31 [in Japanese with English summary].CrossRefGoogle Scholar
  29. Idani, G., Kuroda, S., Kano, T., & Asato, R. (1994). Flora and vegetation of Wamba forest, Central Zaire with reference to bonobo (Pan paniscus) foods at Wamba. Tropics, 3, 309–332.CrossRefGoogle Scholar
  30. Ishizuka, S., Kawamoto, Y., Sakamaki, T., Tokuyama, N., Toda, K., Okamura, H., & Furuichi, T. (2018). Paternity and kin structure among neighbouring groups in wild bonobos at Wamba. Royal Society Open Science, 5, 171006.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Itani, J. (1985). The evolution of primate social structures. Man, 20, 593–611.CrossRefGoogle Scholar
  32. Kano, T. (1992). The last ape: Pigmy chimpanzee behavior and ecology. Stanford: Stanford University Press.Google Scholar
  33. Kano, T. (2001). Counter strategies against potential infanticide? Reconsideration of social characteristics of Pan paniscus. Primate Research, 17, 223–242 [in Japanese with English summary].CrossRefGoogle Scholar
  34. Kano, T., & Mulavwa, M. (1984). Feeding ecology of the pygmy chimpanzees (Pan paniscus) of Wamba. In R. L. Susman (Ed.), The pygmy chimpanzee (pp. 233–274). New York: Springer-Verlag.CrossRefGoogle Scholar
  35. Kinnaird, M. F. (1992). Variable resource defense by the Tana River crested mangabey. Behavioral Ecology and Sociobiology, 31, 115–122.CrossRefGoogle Scholar
  36. Kitamura, K. (1983). Pygmy chimpanzee association patterns in ranging. Primates, 24, 1–12.CrossRefGoogle Scholar
  37. Kitchen, D. M., Cheney, D. L., & Seyfarth, R. M. (2004). Factors mediating inter-group encounters in savannah baboons (Papio cynocephalus ursinus). Behaviour, 141, 197–218.CrossRefGoogle Scholar
  38. Korstjens, A. H., Nijssen, E. C., & Noë, R. (2005). Intergroup relationships in western black-and-white colobus, Colobus polykomos polykomos. International Journal of Primatology, 26, 1267–1289.CrossRefGoogle Scholar
  39. Kummer, H., Banaja, A. A., Abokhatwa, A. N., & Ghandour, A. M. (1985). Differences in social behavior between Ethiopian and Arabian hamadryas baboons. Folia Primatologica, 45, 1–8.CrossRefGoogle Scholar
  40. Kuroda, S. (1979). Grouping of the pygmy chimpanzees. Primates, 20, 161–183.CrossRefGoogle Scholar
  41. Malenky, R. K., & Wrangham, R. W. (1994). A quantitative comparison of terrestrial herbaceous food consumption by Pan paniscus in the Lomako Forest, Zaire, and Pan troglodytes in the Kibale Forest, Uganda. American Journal of Primatology, 32, 1–12.CrossRefGoogle Scholar
  42. Matsuda, I., Kubo, T., Tuuga, A., & Higashi, S. (2010). A Bayesian analysis of the temporal change of local density of proboscis monkeys: Implications for environmental effects on a multilevel society. American Journal of Physical Anthropology, 142, 235–245.PubMedGoogle Scholar
  43. Mulavwa, M., Furuichi, T., Yangozene, K., Yamba-Yamba, M., Motema-Salo, B., Idani, G., Ihobe, H., Hashimoto, C., Tashiro, Y., & Mwanza, N. (2008). Seasonal changes in fruit production and party size of bonobos at Wamba. In T. Furuichi & J. Thompson (Eds.), The bonobos: Ecology, behavior, and conservation (pp. 121–134). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  44. Nishida, T. (1968). The social group of wild chimpanzees of the Mahali Mountains. Primates, 9, 167–224.CrossRefGoogle Scholar
  45. Palombit, R. A. (1993). Lethal territorial aggression in a white-handed gibbon. American Journal of Primatology, 31, 311–318.CrossRefGoogle Scholar
  46. Perry, S. (1996). Intergroup encounters in wild white-faced capuchins (Cebus capucinus). International Journal of Primatology, 17, 309–330.CrossRefGoogle Scholar
  47. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2016). Nlme: Linear and nonlinear mixed effects models. R package version, 3, 1–127 Retrieved from Scholar
  48. Reichard, U., & Sommer, V. (1997). Group encounters in wild gibbons (Hylobates lar): Agonism, affiliation, and the concept of infanticide. Behaviour, 134, 1135–1174.CrossRefGoogle Scholar
  49. Robbins, M. M., & Sawyer, S. C. (2007). Intergroup encounters in mountain gorillas of Bwindi impenetrable National Park, Uganda. Behaviour, 144, 1497–1519.CrossRefGoogle Scholar
  50. Ryu, H. (2017). Mechanisms and socio-sexual functions of female sexual swelling, and male mating strategies in wild bonobos. PhD dissertation, Kyoto University.Google Scholar
  51. Ryu, H., Hill, D. A., & Furuichi, T. (2015). Prolonged maximal sexual swelling in wild bonobos facilitates affiliative interactions between females. Behaviour, 152, 285–311.CrossRefGoogle Scholar
  52. Saito, C., Sato, S., Suzuki, S., Sugiura, H., Agetsuma, N., Takahata, Y., Sasaki, C., Takahashi, H., Tanaka, T., & Yamagiwa, J. (1998). Aggressive intergroup encounters in two populations of Japanese macaques (Macaca fuscata). Primates, 39, 303–312.CrossRefGoogle Scholar
  53. Sakamaki, T., & Nakamura, M. (2015). Intergroup relationships. In M. Nakamura, K. Hosaka, N. Itoh, & K. Zamma (Eds.), Mahale chimpanzees: 50 years of research (pp. 128–139). Cambridge: Cambridge University Press.Google Scholar
  54. Sakamaki, T., Behncke, I., Laporte, M., Mulavwa, M., Ryu, H., Takemoto, H., Tokuyama, N., Yamamoto, S., & Furuichi, T. (2015). Intergroup transfer of females and social relationships between immigrants and residents in bonobo (Pan paniscus) societies. In T. Furuichi, J. Yamagiwa, & F. Aureli (Eds.), Dispersing primate females: Life history and social strategies in male-philopatric species (pp. 127–164). Tokyo: Springer.CrossRefGoogle Scholar
  55. Sicotte, P. (1993). Inter-group encounters and female transfer in mountain gorillas: Influence of group composition on male behavior. American Journal of Primatology, 30, 21–36.CrossRefGoogle Scholar
  56. Sicotte, P., & Macintosh, A. J. (2004). Inter-group encounters and male incursions in Colobus vellerosus in Central Ghana. Behaviour, 141, 533–553.CrossRefGoogle Scholar
  57. Steenbeek, R. (1999). Tenure related changes in wild Thomas’s langurs I: Between-group interactions. Behaviour, 136, 595–625.CrossRefGoogle Scholar
  58. Surbeck, M., Deschner, T., Schubert, G., Weltring, A., & Hohmann, G. (2012). Mate competition, testosterone and intersexual relationships in bonobos, Pan paniscus. Animal Behaviour, 83, 659–669.CrossRefGoogle Scholar
  59. Surbeck, M., Langergraber, K. E., Fruth, B., Vigilant, L., & Hohmann, G. (2017). Male reproductive skew is higher in bonobos than chimpanzees. Current Biology, 27, R623–R641.CrossRefGoogle Scholar
  60. Tan, J., Ariely, D., & Hare, B. (2017). Bonobos respond prosocially toward members of other groups. Scientific Reports, 7, 14733. Scholar
  61. Terada, S., Nackoney, J. R., Sakamaki, T., Mulavwa, M. N., Yumoto, T., & Furuichi, T. (2015). Habitat use of bonobos (Pan paniscus) at Wamba: Selection of vegetation types for ranging, feeding and night-sleeping. American Journal of Primatology, 77, 701–713.CrossRefPubMedGoogle Scholar
  62. Tokuyama, N., & Furuichi, T. (2016). Do friends help each other? Patterns of female coalition formation in wild bonobos at Wamba. Animal Behaviour, 119, 27–35.CrossRefGoogle Scholar
  63. Trapletti, A., & Hornik, K. (2015). Tseries: Time series analysis and computational finance. R package version 0.10–34. Retrieved from
  64. van Elsacker, L., Vervaecke, H., & Verheyen, R. F. (1995). A review of terminology on aggregation patterns in bonobos (Pan paniscus). International Journal of Primatology, 16, 37–52.CrossRefGoogle Scholar
  65. van Schaik, C. P., Assink, P. R., & Salafsky, N. (1992). Territorial behavior in southeast Asian langurs: Resource defense or mate defense? American Journal of Primatology, 26, 233–242.CrossRefGoogle Scholar
  66. White, F. J. (1998). Seasonality and socioecology: The importance of variation in fruit abundance to bonobo sociality. International Journal of Primatology, 19, 1013–1027.CrossRefGoogle Scholar
  67. White, F. J., & Wood, K. D. (2007). Female feeding priority in bonobos, Pan paniscus, and the question of female dominance. American Journal of Primatology, 69, 837–850.CrossRefPubMedGoogle Scholar
  68. Wilson, M. L., Kahlenberg, S. M., Wells, M., & Wrangham, R. W. (2012). Ecological and social factors affect the occurrence and outcomes of intergroup encounters in chimpanzees. Animal Behaviour, 83, 277–291.CrossRefGoogle Scholar
  69. Wilson, M. L., Boesch, C., Fruth, B., Furuichi, T., Gilby, I. C., Hashimoto, C., Hobaiter, C. L., Hohmann, G., Itoh, N., Koops, K., Lloyd, J. N., Matsuzawa, T., Mitani, J. C., Mjungu, D. C., Morgan, D., Muller, M. N., Mundry, R., Nakamura, M., Pruetz, J., Pusey, A. E., Riedel, J., Sanz, C., Schel, A. M., Simmons, N., Waller, M., Watts, D. P., White, F., Wittig, R. M., Zuberbühler, K., & Wrangham, R. W. (2014). Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature, 513, 414–417.CrossRefPubMedGoogle Scholar
  70. Wrangham, R. W. (1986). Ecology and social relationships in two species of chimpanzee. In D. I. Rubenstein & R. W. Wrangham (Eds.), Ecological aspects of social evolution on birds and mammals (pp. 352–378). Princeton: Princeton University Press.Google Scholar
  71. Wrangham, R. W. (1999). Evolution of coalitionary killing. Yearbook of Physical Anthropology, 42, 1–30.CrossRefGoogle Scholar
  72. Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2, 7–10 Retrieved from Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.Research Institute of EcoscienceEwha Womans UniversitySeoulRepublic of Korea
  3. 3.Division of Basic EcologyNational Institute of EcologySeocheonRepublic of Korea
  4. 4.Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayamaJapan

Personalised recommendations