International Journal of Primatology

, Volume 39, Issue 4, pp 567–580 | Cite as

Anaerobic Fungi in Gorilla (Gorilla gorilla gorilla) Feces: an Adaptation to a High-Fiber Diet?

  • Doreen Schulz
  • Moneeb A. Qablan
  • Ilona Profousova-Psenkova
  • Peter Vallo
  • Terence Fuh
  • David Modry
  • Alexander K. Piel
  • Fiona Stewart
  • Klara J. Petrzelkova
  • Kateřina Fliegerová


Many studies have demonstrated the importance of symbiotic microbial communities for the host with beneficial effects for nutrition, development, and the immune system. The majority of these studies have focused on bacteria residing in the gastrointestinal tract, while the fungal community has often been neglected. Gut anaerobic fungi of the class Neocallimastigomycetes are a vital part of the intestinal microbiome in many herbivorous animals and their exceptional abilities to degrade indigestible plant material means that they contribute significantly to fermentative processes in the enteric tract. Gorillas rely on a highly fibrous diet and depend on fermentative microorganisms to meet their daily energetic demands. To assess whether Neocallimastigomycetes occur in gorillas we analyzed 12 fecal samples from wild Western lowland gorillas (Gorilla gorilla gorilla) from Dzanga–Sangha Protected Areas, Central African Republic, and subjected potential anaerobic fungi sequences to phylogenetic analysis. The clone library contained ITS1 fragments that we related to 45 different fungi clones. Of these, 12 gastrointestinal fungi in gorillas are related to anaerobic fungi and our phylogenetic analyses support their assignment to the class Neocallimastigomycetes. As anaerobic fungi play a pivotal role in plant fiber degradation in the herbivore gut, gorillas might benefit from harboring these particular fungi with regard to their nutritional status. Future studies should investigate whether Neocallimastigomycetes are also found in other nonhuman primates with high fiber intake, which would also benefit from having such highly efficient fermentative microbes.


Diet Gorillas Gut microbiome Neocallimastigales 



We are grateful to the government of the Central African Republic as well as the Ministre de l’Education Nationale, de l’Alphabetisation, de l’Enseignement Superieur, et de la Recherche for granting permission to conduct our research within the Dzanga–Sangha Protected Areas, Central African Republic. We further thank the World Wildlife Fund and the Primate Habituation Project for administrative and logistical support on side. Last, we are very grateful to the associate editor and the two anonymous reviewers for their valuable comments. The project was supported by the Leakey Foundation (D. Schulz, K. J. Petrzelkova, K. Fliegerová), by the project CEITEC (Central European Institute of Technology, CZ.1·05/1·1·00/02·0068) from the European Regional Development Fund (D. Modry), by project CZ.02.1.01/0.0/0.0/15_003/0000460 OP RDE (K. Fliegerová), by institutional support of Institute of Vertebrate Biology, Czech Academy of Sciences (RVO: 68081766) (K. J. Petrzelkova) and cofinanced from the European Social Fund and the state budget of the Czech Republic (CZ.1·07/2·3·00/20·0300) (D. Schulz, I. Profousova-Psenkova, M. A. Qablan, D. Modry, K. J. Petrzelkova).

Supplementary material

10764_2018_52_MOESM1_ESM.xlsx (16 kb)
Table S1 (XLSX 16 kb)
10764_2018_52_MOESM2_ESM.xlsx (14 kb)
Table S2 (XLSX 13 kb)
10764_2018_52_MOESM3_ESM.txt (11 kb)
Table S3 (TXT 10 kb)


  1. Abarenkov, K., Tedersoo, L., Nilsson, R. H., Vellak, K., Saar, I., et al. (2010). PlutoF: A web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics Online, 6, 189.CrossRefGoogle Scholar
  2. Ariyawansa, H. A., Hyde, K. D., Jayasiri, S. C., Buyck, B., Chethana, K. W. T., et al. (2015). Fungal diversity notes 111–252: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Diversity, 75(1), 27–274.Google Scholar
  3. Bauchop, T. (1981). The anaerobic fungi in rumen fibre digestion. Agriculture and Environment, 6(2), 339–348.CrossRefGoogle Scholar
  4. Callaghan, T. M., Podmirseg, S. M., Hohlweck, D., Edwards, J. E., Puniya, A. K., et al. (2015). Buwchfawromyces eastonii gen. Nov., sp. nov.: A new anaerobic fungus (Neocallimastigomycota) isolated from buffalo faeces. MycoKeys, 9, 11–28.CrossRefGoogle Scholar
  5. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., et al. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621–1624.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chapman, C. A., & Chapman, L. J. (1990). Dietary variability in primate populations. Primates, 31(1), 121–128.CrossRefGoogle Scholar
  7. Cheng, Y. F., Edwards, J. E., Allison, G. G., Zhu, W.-Y., & Theodorou, M. K. (2009). Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture. Bioresource Technology, 100(20), 4821–4828.CrossRefPubMedGoogle Scholar
  8. Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: Comparisons with other mammals in relation to diet. Journal of Morphology, 166(3), 337–386.CrossRefPubMedGoogle Scholar
  9. Conklin-Brittain, N. L., Knott, C. D., & Wrangham, R. W. (2006). Energy intake by wild chimpanzees and orangutans: Methodological considerations and a preliminary comparison. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates (pp. 445–471). Cambridge: Cambridge University Press.Google Scholar
  10. Dagar, S. S., Kumar, S., Griffith, G. W., Edwards, J. E., Callaghan, T. M., et al. (2015). A new anaerobic fungus (Oontomyces anksri gen. Nov., sp. nov.) from the digestive tract of the Indian camel (Camelus dromedarius). Fungal Biology, 119(8), 731–737.CrossRefPubMedGoogle Scholar
  11. Denman, S. E., Nicholson, M. J., Brookman, J. l., Theodorou, M. K., & McSweeney, C. S. (2008). Detection and monitoring of anaerobic rumen fungi using an ARISA method. Letters in Applied Microbiology, 47(6), 492–499.CrossRefPubMedGoogle Scholar
  12. Doi, R. H., & Kosugi, A. (2004). Cellulosomes: Plant-cell-wall-degrading enzyme complexes. Nature Reviews Microbiology, 2(7), 541–551.CrossRefPubMedGoogle Scholar
  13. Doran-Sheehy, D., Mongo, P., Lodwick, J., & Conklin-Brittain, N. l. (2009). Male and female western gorilla diet: Preferred foods, use of fallback resources, and implications for ape versus old world monkey foraging strategies. American Journal of Physical Anthropology, 140(4), 727–738.CrossRefPubMedGoogle Scholar
  14. Edwards, J. E., Forster, R. J., Callaghan, T. M., Dollhofer, V., Dagar, S. S., et al. (2017). PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges and opportunities. Frontiers in Microbiology, 8, doi:
  15. Edwards, J. E., Kingston-Smith, A. H., Jimenez, H. R., Huws, S. A., Skøt, K. P., et al. (2008). Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen: Initial colonization of forage by ruminal anaerobic fungi. FEMS Microbiology Ecology, 66(3), 537–545.CrossRefPubMedGoogle Scholar
  16. Espey, M. G. (2013). Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota. Free Radical Biology and Medicine, 55, 130–140.CrossRefPubMedGoogle Scholar
  17. Fliegerová, K., Mrázek, J., Hoffmann, K., Zábranská, J., & Voigt, K. (2010). Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiologica, 55(4), 319–325.CrossRefPubMedGoogle Scholar
  18. Fontes, C. M., & Gilbert, H. J. (2010). Cellulosomes: Highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual Review of Biochemistry, 79, 655–681.CrossRefPubMedGoogle Scholar
  19. Frantzen, M. A. J., Silk, J. B., Ferguson, J. W. H., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428.CrossRefPubMedGoogle Scholar
  20. Goudarzi, A. M., Chamani, M., Maheri-Sis, N., Afshar, M. A., & Salamatdoost-Nobar, R. (2015). Genetic diversity of gastrointestinal tract fungi in buffalo by molecular methods on the basis of polymerase chain reaction. Biological Forum, 7(1), 20–25.Google Scholar
  21. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59(3), 307–321.CrossRefGoogle Scholar
  22. Hale, V. L., Tan, C. L., Knight, R., & Amato, K. R. (2015). Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. Journal of Microbiological Methods, 113, 16–26.CrossRefPubMedGoogle Scholar
  23. Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  24. Hamad, I., Keita, M. B., Peeters, M., Delaporte, E., Raoult, D., & Bittar, F. (2014). Pathogenic eukaryotes in gut microbiota of western lowland gorillas as revealed by molecular survey. Scientific Reports, 4, 6417.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hanafy, R. A., Elshahed, M. S., Liggenstoffer, A. S., Griffith, G. W., & Youssef, N. H. (2017). Pecoramyces ruminantium, gen. Nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep. Mycologia, 109(2), 231–243.CrossRefPubMedGoogle Scholar
  26. Harrison, M. E., & Marshall, A. J. (2011). Strategies for the use of fallback foods in apes. International Journal of Primatology, 32(3), 531–565.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Herrera, J., Poudel, R., & Khidir, H. H. (2011). Molecular characterization of coprophilous fungal communities reveals sequences related to root-associated fungal endophytes. Microbial Ecology, 61(2), 239–244.CrossRefPubMedGoogle Scholar
  28. Hooper, L. V., Littman, D. R., & Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kišidayová, S., Váradyová, Z., Pristaš, P., Piknová, M., Nigutová, K., et al. (2009). Effects of high- and low-fiber diets on fecal fermentation and fecal microbial populations of captive chimpanzees. American Journal of Primatology, 71(7), 548–557.CrossRefPubMedGoogle Scholar
  30. Kittelmann, S., Naylor, G. E., Koolaard, J. P., & Janssen, P. H. (2012). A proposed taxonomy of anaerobic fungi (class Neocallimastigomycetes) suitable for large-scale sequence-based community structure analysis. PLoS One, 7(5), e36866.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kumar, S., Dagar, S. S., Sirohi, S. K., Upadhyay, R. C., & Puniya, A. K. (2013). Microbial profiles, in vitro gas production and dry matter digestibility based on various ratios of roughage to concentrate. Annals of Microbiology, 63(2), 541–545.CrossRefGoogle Scholar
  32. Lee, S. S., Ha, J. K., & Cheng, K.-J. (2000). Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions. Applied and Environmental Microbiology, 66(9), 3807–3813.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., et al. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647–1651.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Liggenstoffer, A. S., Youssef, N. H., Couger, M. B., & Elshahed, M. S. (2010). Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores. The ISME Journal, 4(10), 1225–1235.CrossRefPubMedGoogle Scholar
  35. Mackie, R. I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integrative and Comparative Biology, 42(2), 319–326.CrossRefPubMedGoogle Scholar
  36. Mackie, R. I., Rycyk, M., Ruemmler, R. L., Aminov, R. I., & Wikelski, M. (2004). Biochemical and microbiological evidence for fermentative digestion in free-living land iguanas (Conolophus pallidus) and marine iguanas (Amblyrhynchus cristatus) on the Galapagos archipelago. Physiological and Biochemical Zoology, 77(1), 127–138.CrossRefPubMedGoogle Scholar
  37. Masi, S. (2007). Seasonal influence on foraging strategies, activity and energy budgets of western lowland gorillas (Gorilla gorilla gorilla) in Bai Hokou, Central African Republic. PhD thesis, La Sapienza - Università di Roma.Google Scholar
  38. Matheny, P. B., Curtis, J. M., Hofstetter, V., Aime, M. C., Moncalvo, J.-M., et al. (2006). Major clades of Agaricales: A multilocus phylogenetic overview. Mycologia, 98(6), 982–995.CrossRefPubMedGoogle Scholar
  39. McFall-Ngai, M. J. (2002). Unseen forces: The influence of bacteria on animal development. Developmental Biology, 242(1), 1–14.CrossRefPubMedGoogle Scholar
  40. Migaki, G., Schmidt, R. E., Toft, J. D., & Kaufmann, A. F. (1982). Mycotic infections of the alimentary tract of nonhuman primates: A review. Veterinary Pathology, 19(7 Suppl), 93–103.CrossRefPubMedGoogle Scholar
  41. Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fiber diets and comparison with human data. The Journal of Nutrition, 118(9), 1082–1088.CrossRefPubMedGoogle Scholar
  42. Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., et al. (2011). Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332(6032), 970–974.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nagy, L. G., Kocsubé, S., Csanádi, Z., Kovács, G. M., Petkovits, T., et al. (2012). Re-mind the gap! Insertion–deletion data reveal neglected phylogenetic potential of the nuclear ribosomal internal transcribed spacer (ITS) of Fungi. PLoS One, 7(11), e49794.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Nicholson, M. J., McSweeney, C. S., Mackie, R. I., Brookman, J. L., & Theodorou, M. K. (2010). Diversity of anaerobic gut fungal populations analysed using ribosomal ITS1 sequences in faeces of wild and domesticated herbivores. Anaerobe, 16(2), 66–73.CrossRefPubMedGoogle Scholar
  45. Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Microbiology, 91(2), 249–262.Google Scholar
  46. Popovich, D. G., Jenkins, D. J., Kendall, C. W., Dierenfeld, E. S., Carroll, R. W., et al. (1997). The western lowland gorilla diet has implications for the health of humans and other hominoids. The Journal of Nutrition, 127(10), 2000–2005.CrossRefPubMedGoogle Scholar
  47. Posada, D., & Crandall, K. A. (1998). MODELTEST: Testing the model of DNA substitution. Bioinformatics, 14(9), 817–818.CrossRefGoogle Scholar
  48. Remis, M. J. (2003). Are gorillas vacuum cleaners of the forest floor? The roles of gorilla body size, habitat and food preferences on dietary flexibility and nutrition. In A. B. Taylor & M. L. Goldsmith (Eds.), Gorilla biology: A multidisciplinary perspective (pp. 385–404). Cambridge: Cambridge University Press.Google Scholar
  49. Remis, M. J., & Dierenfeld, E. S. (2004). Digesta passage, digestibility and behavior in captive gorillas under two dietary regimens. International Journal of Primatology, 25(4), 825–845.CrossRefGoogle Scholar
  50. Remis, M. J., Dierenfeld, E. S., Mowry, C. B., & Carroll, R. W. (2001). Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou. Central African Republic. International Journal of Primatology, 22(5), 807–836.CrossRefGoogle Scholar
  51. Robert, C., & Bernalier-Donadille, A. (2003). The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methane-excreting subjects. FEMS Microbiology Ecology, 46(1), 81–89.CrossRefPubMedGoogle Scholar
  52. Rothman, J. M., Dierenfeld, E. S., Hintz, H. F., & Pell, A. N. (2008). Nutritional quality of gorilla diets: Consequences of age, sex, and season. Oecologia, 155(1), 111–122.CrossRefPubMedGoogle Scholar
  53. Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313–323.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sanders, J. G., Powell, S., Kronauer, D. J. C., Vasconcelos, H. L., Frederickson, M. E., & Pierce, N. E. (2014). Stability and phylogenetic correlation in gut microbiota: Lessons from ants and apes. Molecular Ecology, 23(6), 1268–1283.CrossRefPubMedGoogle Scholar
  55. Sekirov, I., Russell, S. L., Antunes, L. C. M., & Finlay, B. B. (2010). Gut microbiota in health and disease. Physiological Reviews, 90(3), 859–904.CrossRefPubMedGoogle Scholar
  56. Song, S. J., Amir, A., Metcalf, J. L., Amato, K. R., Xu, Z. Z., et al. (2016). Preservation methods differ in fecal microbiome stability, affecting suitability for field studies. mSystems, 1(3), e00021-16, e00021, e00016.Google Scholar
  57. Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678–687.PubMedGoogle Scholar
  58. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Torsvik, V., & Ovreas, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5(3), 240–245.CrossRefPubMedGoogle Scholar
  60. Tuckwell, D. S., Nicholson, M. J., McSweeney, C. S., Theodorou, M. K., & Brookman, J. L. (2005). The rapid assignment of ruminal fungi to presumptive genera using ITS1 and ITS2 RNA secondary structures to produce group-specific fingerprints. Microbiology, 151(5), 1557–1567.CrossRefPubMedGoogle Scholar
  61. Tutin, C. E. G., Fernandez, M., Rogers, M. E., Williamson, E. A., & McGrew, W. C. (1991). Foraging profiles of sympatric lowland gorillas and chimpanzees in the Lopé reserve, Gabon. Philosophical Transactions of the Royal Society of London B, 334(1270), 179–186.CrossRefGoogle Scholar
  62. Ungar, P. S. (2007). Dental functional morphology: The known, the unknown and the unknowable. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 39–55). Oxford: Oxford University Press.Google Scholar
  63. Wrangham, R. W., Conklin, N. L., Chapman, C. A., & Hunt, K. D. (1991). The significance of fibrous foods for Kibale Forest chimpanzees. Philosophical Transactions of the Royal Society of London B. Biological Sciences, 334(1270), 171–178.CrossRefPubMedGoogle Scholar
  64. Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19(6), 949–970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Doreen Schulz
    • 1
    • 2
    • 3
  • Moneeb A. Qablan
    • 4
  • Ilona Profousova-Psenkova
    • 5
  • Peter Vallo
    • 2
    • 6
  • Terence Fuh
    • 7
  • David Modry
    • 3
    • 8
    • 9
  • Alexander K. Piel
    • 10
    • 11
  • Fiona Stewart
    • 10
    • 11
  • Klara J. Petrzelkova
    • 2
    • 9
    • 12
  • Kateřina Fliegerová
    • 13
  1. 1.Department of Botany and ZoologyMasaryk UniversityBrnoCzech Republic
  2. 2.Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
  3. 3.Department of Pathology and ParasitologyUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  4. 4.Veterinary Medicine Department, College of Food and AgricultureUnited Arab Emirates UniversityAl AinUnited Arab Emirates
  5. 5.Zoological Garden Ústí nad LabemÚstí nad LabemCzech Republic
  6. 6.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
  7. 7.Primate Habituation Project, World Wildlife Fund, Dzanga–Sangha Protected AreasBanguiCentral African Republic
  8. 8.CEITEC-VFUUniversity of Veterinary and Pharmaceutical SciencesBrnoCzech Republic
  9. 9.Institute of Parasitology, Biology CentreCzech of the Academy of SciencesČeské BudějoviceCzech Republic
  10. 10.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK
  11. 11.Ugalla Primate ProjectUvinzaTanzania
  12. 12.Liberec ZooLiberecCzech Republic
  13. 13.Institute of Animal Physiology and GeneticsCzech Academy of SciencesPragueCzech Republic

Personalised recommendations