Advertisement

Consequences of Lemur Loss for Above-Ground Carbon Stocks in a Malagasy Rainforest

  • Onja H. Razafindratsima
  • Anecia Gentles
  • Andrea P. Drager
  • Jean-Claude A. Razafimahaimodison
  • Claude J. Ralazampirenena
  • Amy E. Dunham
Article

Abstract

Anthropogenic disturbances have resulted in declines of seed-dispersing primate frugivores in tropical forests. Previous work has suggested that loss of seed dispersal by large frugivores may have a negative impact on ecosystem carbon storage by reducing tree biomass. However, we know little about the potential impacts of losing frugivores in Madagascar’s diverse rainforest ecosystem. Understanding the effects of frugivore extinction on carbon loss is relevant in Madagascar, where threatened lemur taxa are the only dispersers of many large-seeded plant species. Using a dataset of tree species composition and traits from the southeastern rainforests of Ranomafana National Park, we examined whether seed size and lemur-dependent dispersal are positively associated with above-ground tree biomass. We then simulated different scenarios of population declines of large-seeded trees (>10 mm seed length) dependent on lemur-mediated seed dispersal, to examine potential directional changes in carbon storage capacity of Malagasy forests under lemur loss. Lemur-dispersed tree species, which have large seeds, had higher above-ground biomass than other species. Our simulations showed that the loss of large frugivorous primates in Madagascar may decrease the forest’s potential to store carbon. These results demonstrate the importance of primate conservation for maintaining functioning ecosystems and forest carbon stocks in one of the world’s hottest hotspots of biodiversity.

Keywords

Above-ground biomass Conservation Extinction Primate Seed dispersal Tropical forest 

Notes

Acknowledgements

We thank numerous field research technicians for their valuable help in data collection and species identification. Part of the data used in this publication were provided by the Tropical Ecology Assessment and Monitoring (TEAM) Network, a collaboration between Conservation International, the Missouri Botanical Garden, the Smithsonian Institution, and the Wildlife Conservation Society, and partially funded by these institutions, the Gordon and Betty Moore Foundation, and other donors. We also thank Yamato Tsuji and two anonymous reviewers for their insightful comments that improved an earlier version of this manuscript.

Supplementary material

10764_2018_42_MOESM1_ESM.docx (448 kb)
ESM 1 (DOCX 448 kb)
10764_2018_42_MOESM2_ESM.docx (82 kb)
ESM 2 (DOCX 81 kb)
10764_2018_42_MOESM3_ESM.docx (189 kb)
ESM 3 (DOCX 188 kb)
10764_2018_42_MOESM4_ESM.docx (591 kb)
ESM 4 (DOCX 591 kb)
10764_2018_42_MOESM5_ESM.docx (134 kb)
ESM 5 (DOCX 134 kb)

References

  1. Allnutt, T. F., Asner, G. P., Golden, C. D., & Powell, G. V. (2013). Mapping recent deforestation and forest disturbance in northeastern Madagascar. Tropical Conservation Science, 6(1), 1–15.CrossRefGoogle Scholar
  2. Asner, G. P., Clark, J. K., Mascaro, J., Vaudry, R., Chadwick, K. D., et al (2012). Human and environmental controls over aboveground carbon storage in Madagascar. Carbon Balance and Management, 7, 2.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrett, M. A., & Ratsimbazafy, J. (2009). Luxury bushmeat trade threatens lemur conservation. Nature, 461(7263), 470–470.CrossRefPubMedGoogle Scholar
  4. Bello, C., Galetti, M., Pizo, M. A., Magnago, L. F. S., Rocha, M. F., et al (2015). Defaunation affects carbon storage in tropical forests. Science Advances, 1(11), e1501105.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Birkinshaw, C. R. (1999). The importance of the black lemur (Eulemur macaco) for seed dispersal in Lokobe Forest, Nosy be. In B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 189–199). New York: Springer.CrossRefGoogle Scholar
  6. Bollen, A., Elsacker, L. V., & Ganzhorn, J. U. (2004). Relations between fruits and disperser assemblages in a Malagasy littoral forest: A community-level approach. Journal of Tropical Ecology, 20(6), 599–612.CrossRefGoogle Scholar
  7. Bollen, A., Donati, G., Fietz, J., Schwab, D., Ramanamanjato, J.-B., et al (2005). An intersite comparison of fruit characteristics in Madagascar: Evidence for selection pressure through abiotic constraints rather than through co-evolution. In J. L. Dew & J. P. Boubli (Eds.), Tropical fruits and frugivores (pp. 93–119). Dordrecht: Springer.CrossRefGoogle Scholar
  8. Borgerson, C., McKean, M. A., Sutherland, M. R., & Godfrey, L. R. (2016). Who hunts lemurs and why they hunt them. Biological Conservation, 197, 124–130.CrossRefGoogle Scholar
  9. Carvalho, C. S., Galetti, M., Colevatti, R. G., & Jordano, P. (2016). Defaunation leads to microevolutionary changes in a tropical palm. Scientific Reports, 6, 31957.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., et al (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.CrossRefPubMedGoogle Scholar
  11. Chave, J., Muller-Landau, H. C., Baker, T. R., Easdale, T. A., ter Steege, H., & Webb, C. O. (2006). Regional and phylogenetic variation of wood density across 2456 Neotropical tree species. Ecological Applications, 16(6), 2356–2367.CrossRefPubMedGoogle Scholar
  12. Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12(4), 351–366.CrossRefPubMedGoogle Scholar
  13. Culot, L., Bello, C., Batista, J. L. F., Couto, H. T. Z., & Galetti, M. (2017). Synergistic effects of seed disperser and predator loss on recruitment success and long-term consequences for carbon stocks in tropical rainforests. Scientific Reports, 7(1), 7662.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dausmann, K. H., Glos, J., Linsenmair, K. E., & Ganzhorn, J. U. (2008). Improved recruitment of a lemur-dispersed tree in Malagasy dry forests after the demise of vertebrates in forest fragments. Oecologia, 157(2), 307–316.CrossRefPubMedGoogle Scholar
  15. Dew, J. L., & Wright, P. (1998). Frugivory and seed dispersal by four species of primates in Madagascar’s eastern rain forest. Biotropica, 30(3), 425–437.CrossRefGoogle Scholar
  16. Dewar, R. E., & Richard, A. F. (2012). Madagascar: A history of arrivals, what happened, and will happen next. Annual Review of Anthropology, 41(1), 495–517.CrossRefGoogle Scholar
  17. Dirzo, R., Young, H. S., Galetti, M., Ceballos, G., Isaac, N. J., & Collen, B. (2014). Defaunation in the Anthropocene. Science, 345(6195), 401–406.CrossRefPubMedGoogle Scholar
  18. Donoso, I., Schleuning, M., García, D., & Fründ, J. (2017). Defaunation effects on plant recruitment depend on size matching and size trade-offs in seed-dispersal networks. Proceedings of the Royal Society B: Biological Sciences, 284, 20162664.CrossRefPubMedGoogle Scholar
  19. Dunham, A. E., Erhart, E. M., Overdorff, D. J., & Wright, P. C. (2008). Evaluating effects of deforestation, hunting, and El Nino events on a threatened lemur. Biological Conservation, 141(1), 287–297.CrossRefGoogle Scholar
  20. Dunham, A. E., Erhart, E. M., & Wright, P. C. (2011). Global climate cycles and cyclones: Consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology, 17(1), 219–227.CrossRefGoogle Scholar
  21. Federman, S., Dornburg, A., Daly, D. C., Downie, A., Perry, G. H., et al (2016). Implications of lemuriform extinctions for the Malagasy flora. Proceedings of the National Academy of Sciences of the USA, 113(18), 5041–5046.CrossRefPubMedGoogle Scholar
  22. Fleming, T. H., Breitwisch, R., & Whitesides, G. H. (1987). Patterns of tropical vertebrate frugivore diversity. Annual Review of Ecology and Systematics, 18, 91–109.CrossRefGoogle Scholar
  23. Foster, S., & Janson, C. H. (1985). The relationship between seed size and establishment conditions in tropical woody plants. Ecology, 66(3), 773–780.CrossRefGoogle Scholar
  24. Fricke, E. C., Tewksbury, J. J., Wandrag, E. M., & Rogers, H. S. (2017). Mutualistic strategies minimize coextinction in plant–disperser networks. Proceedings of the Royal Society B: Biological Sciences, 284(1854), 20162302.CrossRefPubMedGoogle Scholar
  25. Fritz, S. A., Bininda-Emonds, O. R. P., & Purvis, A. (2009). Geographical variation in predictors of mammalian extinction risk: Big is bad, but only in the tropics. Ecology Letters, 12(6), 538–549.CrossRefPubMedGoogle Scholar
  26. Galetti, M., & Dirzo, R. (2013). Ecological and evolutionary consequences of living in a defaunated world. Biological Conservation, 163, 1–6.CrossRefGoogle Scholar
  27. Galetti, M., Guevara, R., Côrtes, M. C., Fadini, R., Von Matter, S., et al (2013). Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340(6136), 1086–1090.CrossRefPubMedGoogle Scholar
  28. Ganzhorn, J. U., Fietz, J., Rakotovao, E., Schwab, D., & Zinner, D. (1999). Lemurs and the regeneration of dry deciduous forest in Madagascar. Conservation Biology, 13(4), 794–804.CrossRefGoogle Scholar
  29. Ganzhorn, J. U., Lowry, P. P., Schatz, G. E., & Sommer, S. (2001). The biodiversity of Madagascar: One of the world’s hottest hotspots on its way out. Oryx, 35(4), 346–348.CrossRefGoogle Scholar
  30. Goodman, S. M., & Sterling, E. J. (1996). The utilisation of Canarium (Burseraceae) seeds by vertebrates in the Reserve Naturelle Integrale d’Andringitra, Madagascar. Fieldiana Zoology, 85, 83–89.Google Scholar
  31. Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D., & Hawkins, F. (2007). Fifty years of deforestation and forest fragmentation in Madagascar. Environmental Conservation, 34(4), 325–333.CrossRefGoogle Scholar
  32. Harrison, R. D., Tan, S., Plotkin, J. B., Slik, F., Detto, M., et al (2013). Consequences of defaunation for a tropical tree community. Ecology Letters, 16(5), 687–694.CrossRefPubMedGoogle Scholar
  33. IUCN (2017) IUCN Red List of threatened species, IUCN, the World Conservation Union. http://www.iucnredlist.org/
  34. Jansen, P. A., Hirsch, B. T., Emsens, W.-J., Zamora-Gutierrez, V., Wikelski, M., & Kays, R. (2012). Thieving rodents as substitute dispersers of megafaunal seeds. Proceedings of the National Academy of Sciences of the USA, 109(31), 12610–12615.CrossRefPubMedGoogle Scholar
  35. Johnson, C. N., Balmford, A., Brook, B. W., Buettel, J. C., Galetti, M., et al (2017). Biodiversity losses and conservation responses in the Anthropocene. Science, 356(6335), 270–275.CrossRefPubMedGoogle Scholar
  36. Kurten, E. L. (2013). Cascading effects of contemporaneous defaunation on tropical forest communities. Biological Conservation, 163, 22–32.CrossRefGoogle Scholar
  37. Laughlin, D. C. (2014). The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology, 102, 186–193.CrossRefGoogle Scholar
  38. Levey, D. J. (1987). Seed size and fruit-handling techniques of avian frugivores. The American Naturalist, 129(4), 471–485.CrossRefGoogle Scholar
  39. Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., et al (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003–1006.CrossRefPubMedGoogle Scholar
  40. Malhi, Y., Doughty, C. E., Galetti, M., Smith, F. A., Svenning, J.-C., & Terborgh, J. W. (2016). Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the USA, 113(4), 838–846.CrossRefPubMedGoogle Scholar
  41. Martinez, B. T., & Razafindratsima, O. H. (2014). Frugivory and seed dispersal patterns of the red-ruffed lemur, Varecia rubra, at a forest restoration site in Masoala National Park, Madagascar. Folia Primatologica, 85(4), 228–243.CrossRefGoogle Scholar
  42. Nuñez-Iturri, G., & Howe, H. F. (2007). Bushmeat and the fate of trees with seeds dispersed by large primates in a lowland rain forest in western Amazonia. Biotropica, 39(3), 348–354.CrossRefGoogle Scholar
  43. Osuri, A. M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Hurtado Astaiza, J., et al (2016). Contrasting effects of defaunation on aboveground carbon storage across the global tropics. Nature Communications, 7, 11351.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Overdorff, D. J. (1993). Similarities, differences, and seasonal patterns in the diets of Eulemur rubriventer and Eulemur fulvus rufus in the Ranomafana National Park, Madagascar. International Journal of Primatology, 14(5), 721–753.CrossRefGoogle Scholar
  45. Overdorff, D. J., & Strait, S. G. (1998). Seed handling by three prosimian primates in southeastern Madagascar: Implications for seed dispersal. American Journal of Primatology, 45(1), 69–82.CrossRefPubMedGoogle Scholar
  46. Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. M., & Levi, T. (2016). Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proceedings of the National Academy of Sciences of the USA, 113(4), 892–897.CrossRefPubMedGoogle Scholar
  47. Rakotomanana, H., Hino, T., Kanzaki, M., & Morioka, H. (2003). The role of the velvet asity Philepitta castanea in regeneration of understory shrubs in Madagascan rainforest. Ornithological Science, 2(1), 49–58.CrossRefGoogle Scholar
  48. Ratsimbazafy, J. H., Arrigo-Nelson, S. J., Dollar, L., Holmes, C. M., Irwin, M. T., et al (2012). Conservation of Malagasy prosimians: A view from the Great Red Island. In J. Masters, M. Gamba, & F. Génin (Eds.), Leaping ahead: Advances in Prosimian Biology (pp. 387–396). New York: Springer Science+Business Media.Google Scholar
  49. Razafindratsima, O. H. (2014). Seed dispersal by vertebrates in Madagascar’s forests: Review and future directions. Madagascar Conservation and Development, 9, 90–97.CrossRefGoogle Scholar
  50. Razafindratsima, O. H. (2017). Post-dispersal seed removal by rodents in Ranomafana rain forest, Madagascar. Journal of Tropical Ecology, 33, 232–236.CrossRefGoogle Scholar
  51. Razafindratsima, O. H., & Dunham, A. E. (2015). Assessing the impacts of nonrandom seed dispersal by multiple frugivore partners on plant recruitment. Ecology, 96(1), 24–30.CrossRefPubMedGoogle Scholar
  52. Razafindratsima, O. H., & Dunham, A. E. (2016). Frugivores bias seed-adult tree associations through non-random seed dispersal: A phylogenetic approach. Ecology, 97(8), 2094–2102.CrossRefPubMedGoogle Scholar
  53. Razafindratsima, O. H., & Martinez, B. T. (2012). Seed dispersal by red-ruffed lemurs: Seed size, viability, and beneficial effect on seedling growth. Ecotropica, 18, 15–26.Google Scholar
  54. Razafindratsima, O. H., & Razafimahatratra, E. (2010). Effect of red ruffed lemur gut passage on the germination of native rainforest plant species. Lemur News, 15, 39–42.Google Scholar
  55. Razafindratsima, O. H., Jones, T. A., & Dunham, A. E. (2014). Patterns of movement and seed dispersal by three lemur species. American Journal of Primatology, 76(1), 84–96.CrossRefPubMedGoogle Scholar
  56. Razafindratsima, O. H., Brown, K. A., Carvalho, F., Johnson, S. E., Wright, P. C., & Dunham, A. E. (2017). Data from: Edge effects on components of diversity and above-ground biomass in a tropical rainforest. Dryad Data Repository.  https://doi.org/10.5061/dryad.jn743.
  57. Razafindratsima, O. H., Brown, K. A., Carvalho, F., Johnson, S. E., Wright, P. C., & Dunham, A. E. (2018a). Edge effects on components of diversity and above-ground biomass in a tropical rainforest. Journal of Applied Ecology, 55(2), 977–985.CrossRefGoogle Scholar
  58. Razafindratsima, O. H., Yacoby, Y., & Park, D. S. (2018b). MADA: Malagasy Animal Trait Data Archive. Ecology, 99, 990.CrossRefPubMedGoogle Scholar
  59. Razafindratsima, O. H., Yacoby, Y., & Park, D. S. (2018c). Data from: MADA: Malagasy Animal Trait Data Archive. Dryad Data Repository.  https://doi.org/10.5061/dryad.44tt0
  60. Schwitzer, C., Mittermeier, R. A., Johnson, S. E., Donati, G., Irwin, M., Peacock, H., et al (2014). Averting lemur extinctions amid Madagascar’s political crisis. Science, 343(6173), 842–843.CrossRefPubMedGoogle Scholar
  61. Slik, J. W., Paoli, G., McGuire, K., Amaral, I., Barroso, J., et al (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271.CrossRefGoogle Scholar
  62. Terborgh, J. W., Nuñez-Iturri, G., Pitman, N. C. A., Valverde, F. H. C., Alvarez, P., et al (2008). Tree recruitment in an empty forest. Ecology, 89(6), 1757–1768.CrossRefPubMedGoogle Scholar
  63. White, F. J., Overdorff, D. J., Balko, E. A., & Wright, P. C. (1995). Distribution of ruffed lemurs (Varecia variegata) in Ranomafana National Park, Madagascar. Folia Primatologica, 64(3), 124–131.CrossRefGoogle Scholar
  64. Wilmé, L., Waeber, P. O., Moutou, F., Gardner, C. J., Razafindratsima, O. H., et al (2016). A proposal for ethical research conduct in Madagascar. Madagascar Conservation & Development, 11(1).  https://doi.org/10.4314/mcd.v11i1.8.
  65. Wotton, D. M., & Kelly, D. (2011). Frugivore loss limits recruitment of large-seeded trees. Proceedings of the Royal Society B: Biological Sciences, 278(1723), 3345–3354.CrossRefPubMedGoogle Scholar
  66. Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., et al (2009). Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository.  https://doi.org/10.5061/dryad.234.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Onja H. Razafindratsima
    • 1
  • Anecia Gentles
    • 2
  • Andrea P. Drager
    • 2
  • Jean-Claude A. Razafimahaimodison
    • 3
  • Claude J. Ralazampirenena
    • 3
  • Amy E. Dunham
    • 2
    • 3
  1. 1.Department of BiologyCollege of CharlestonCharlestonUSA
  2. 2.Department of BioSciencesRice UniversityHoustonUSA
  3. 3.Centre ValBioRanomafanaMadagascar

Personalised recommendations