International Journal of Primatology

, Volume 39, Issue 2, pp 208–221 | Cite as

Development and Validation of an Enzyme Immunoassay for Fecal Dehydroepiandrosterone Sulfate in Japanese Macaques (Macaca fuscata)

  • Rafaela S. C. Takeshita
  • Fred B. Bercovitch
  • Michael A. Huffman
  • Kodzue Kinoshita


Measuring hormonal profiles is important in monitoring stress, physical fitness, and reproductive status in primates. Noninvasive methods have been used to measure several steroid hormones in primates without causing them stress. However, few studies have used feces or urine to measure dehydroepiandrosterone sulfate (DHEAS), an important precursor of sex steroids that has been studied as a biomarker of aging, pregnancy, and stress in humans and nonhuman primates. We developed an enzyme immunoassay to detect DHEAS in the feces of Japanese macaques (Macaca fuscata). Our subjects included eight singly housed Japanese macaques. To validate the assay, we administrated oral DHEA to one male and one female macaque, collected their feces, and measured DHEAS levels over time. Given that DHEAS is related to gonadal steroids and the stress response, we also measured DHEAS concentrations in response to adrenal (adrenocorticotropic hormone [ACTH]) and gonadal (human chorionic gonadotropin [hCG]) stimulation. Our assay successfully detected DHEAS in Japanese macaque feces, and levels of DHEAS were associated with the amount of DHEA ingested. Parallelism and accuracy tests revealed that fecal extracts were reliable measures of DHEAS. Neither ACTH nor hCG challenge appeared to affect DHEAS levels. The method we describe is less expensive than that using the commercially available kits and is applicable to investigations involving aging, stress, and reproduction in Japanese macaques.


Aging hormone Fecal steroids Noninvasive monitoring Stress hormones 



We thank Mr. Akihisa Kaneko, Ms. Mayumi Morimoto, and all support staff from the Center for Human Evolution Modeling Research at the Primate Research Institute for providing useful information and assistance during the experimental procedures. We would like to express our gratitude to the journal editor and reviewers for the English language suggestions and for the very useful comments to improve this manuscript. The study was funded by the Primate Research Institute, the Leading Program in Primatology and Wildlife Science (PWS), a grant-in-aid from the Japan Society for the Promotion of Science (JSPS) no. 16 J00399, and a scholarship to R. S. C. Takeshita by the Nippon Foundation.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.


  1. Alesci S, Bornstein S. (2001). Intraadrenal mechanisms of DHEA regulation: A hypothesis for adrenopause. Experimental and Clinical Endocrinology & Diabetes 109(2): 75–82.Google Scholar
  2. Auchus, R. J., & Rainey, W. E. (2004). Adrenarche: Physiology, biochemistry and human disease. Clinical Endocrinology, 60(3), 288–296.CrossRefPubMedGoogle Scholar
  3. Baulieu, E. E. (1996). Dehydroepiandrosterone (DHEA): A fountain of youth? Journal of Clinical Endocrinology and Metabolism, 81(9), 3147–3151.CrossRefPubMedGoogle Scholar
  4. Baulieu, E. E., Thomas, G., Legrain, S., Lahlou, N., Roger, M., Debuire, B., Faucounau, V., Girard, L., Hervy, M. P., Latour, F., Leaud, M. C., Mokrane, A., Pitti-Ferrandi, H., Trivalle, C., de Lacharriere, O., Nouveau, S., Rakoto-Arison, B., Souberbielle, J. C., Raison, J., le Bouc, Y., Raynaud, A., Girerd, X., & Forette, F. (2000). Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge study to a sociobiomedical issue. Proceedings of the National Academy of Sciences of the USA, 97(8), 4279–4284.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Behringer, V., & Deschner, T. (2017). Non-invasive monitoring of physiological markers in primates. Hormones and Behavior, 91, 3–18.CrossRefPubMedGoogle Scholar
  6. Behringer, V., Hohmann, G., Stevens, J. M., Weltring, A., & Deschner, T. (2012). Adrenarche in bonobos (Pan paniscus): Evidence from ontogenetic changes in urinary dehydroepiandrosterone-sulfate levels. Journal of Endocrinology, 214(1), 55–65.CrossRefPubMedGoogle Scholar
  7. Belanger, A., Candas, B., Dupont, A., Cusan, L., Diamond, P., et al (1994). Changes in serum concentrations of conjugated and unconjugated steroids in 40-year-old to 80-year-old men. The Journal of Clinical Endocrinology and Metabolism, 79(4), 1086–1090.PubMedGoogle Scholar
  8. Bernstein, R. M., Sterner, K. N., & Wildman, D. E. (2012). Adrenal androgen production in catarrhine primates and the evolution of adrenarche. American Journal of Physical Anthropology, 147(3), 389–400.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boudarene, M., Legros, J. J., & Timsit-Berthier, M. (2002). Study of the stress response: Role of anxiety, cortisol and DHEAS. Encephale, 28(2), 139–146.PubMedGoogle Scholar
  10. Burger, H. G. (2002). Androgen production in women. Fertility and Sterility, 77(Suppl 4), S3–S5.CrossRefPubMedGoogle Scholar
  11. Burkhardt, T., Schmidt, N. O., Vettorazzi, E., Aberle, J., Mengel, M., & Flitsch, J. (2013). DHEA(S): A novel marker in Cushing's disease. Acta Neurochirurgica (Wien), 155(3), 479–484 discussion 484.CrossRefGoogle Scholar
  12. Campbell, B. (2011). Adrenarche in comparative perspective. American Journal of Human Biology, 23(1), 44–52.CrossRefPubMedGoogle Scholar
  13. Castracane, V. D., Cutler Jr., G. B., & Loriaux, D. L. (1981). Pubertal endocrinology of the baboon: Adrenarche. American Journal of Physiology, 241(4), E305–E309.PubMedGoogle Scholar
  14. Copeland, K. C., Eichberg, J. W., Parker Jr., C. R., & Bartke, A. (1985). Puberty in the chimpanzee: Somatomedin-C and its relationship to somatic growth and steroid hormone concentrations. Journal of Clinical Endocrinology and Metabolism, 60(6), 1154–1160.CrossRefPubMedGoogle Scholar
  15. Cutler Jr., G. B., Glenn, M., Bush, M., Hodgen, G. D., Graham, C. E., & Loriaux, D. L. (1978). Adrenarche: A survey of rodents, domestic animals, and primates. Endocrinology, 103(6), 2112–2118.CrossRefPubMedGoogle Scholar
  16. Degen, L. P., & Phillips, S. F. (1996). Variability of gastrointestinal transit in healthy women and men. Gut, 39(2), 299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Du, C. L., Lin, M. C., Lu, L., & Tai, J. J. (2011). Correlation of occupational stress index with 24-hour urine cortisol and serum DHEA sulfate among city bus drivers: A cross-sectional study. Safety and Health at Work, 2(2), 169–175.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fehér, T., Szalay, K. S., & Szilágyi, G. (1985). Effect of ACTH and prolactin on dehydroepiandrosterone, its sulfate ester and cortisol production by normal and tumorous human adrenocortical cells. Journal of Steroid Biochemistry, 23(2), 153–157.CrossRefPubMedGoogle Scholar
  19. Flood, J. F., & Roberts, E. (1988). Dehydroepiandrosterone sulfate improves memory in aging mice. Brain Research, 448(1), 178–181.CrossRefPubMedGoogle Scholar
  20. Goncharova, N. D., Vengerin, A. A., & Chigarova, O. A. (2012). Repeated moderate stress stimulates the production of dehydroepiandrosterone sulfate (DHEAS) and reduces corticosteroid imbalance in old Macaca mulatta. Bulletin of Experimental Biology and Medicine, 153(5), 750–753.CrossRefPubMedGoogle Scholar
  21. Hammer, F., Subtil, S., Lux, P., Maser-Gluth, C., Stewart, P. M., Allolio, B., & Arlt, W. (2005). No evidence for hepatic conversion of dehydroepiandrosterone (DHEA) sulfate to DHEA: In vivo and in vitro studies. The Journal of Clinical Endocrinology & Metabolism, 90(6), 3600–3605.CrossRefGoogle Scholar
  22. Havelock, J. C., Auchus, R. J., & Rainey, W. E. (2004). The rise in adrenal androgen biosynthesis: Adrenarche. Seminars in Reproductive Medicine, 22(4), 337–347.CrossRefPubMedGoogle Scholar
  23. Hechter, O., Grossman, A., & Chatterton Jr., R. T. (1997). Relationship of dehydroepiandrosterone and cortisol in disease. Medical Hypotheses, 49(1), 85–91.CrossRefPubMedGoogle Scholar
  24. Heistermann, M., Palme, R., & Ganswindt, A. (2006). Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. American Journal of Primatology, 68(3), 257–273.CrossRefPubMedGoogle Scholar
  25. Herrera-Justiniano, E., Galvez, M., Aznar, A., Gomez, S., Sendon, P., Zurita, A. R., Malagon, C. M., & Aznar, R. A. (1979). Changes in the plasma levels of androstenedione, dehydroepiandrosterone and cortisol after stimulation with ACTH and hCG and suppression with dexamethasone during male puberty. Acta Endocrinologica, 90(1), 113–121.PubMedGoogle Scholar
  26. Hornsby, P. J. (1995). Biosynthesis of DHEAS by the human adrenal cortex and its age-related decline. Annals of the New York Academy of Sciences, 774, 29–46.CrossRefPubMedGoogle Scholar
  27. Hu, Y., Cardounel, A., Gursoy, E., Anderson, P., & Kalimi, M. (2000). Anti-stress effects of dehydroepiandrosterone: Protection of rats against repeated immobilization stress-induced weight loss, glucocorticoid receptor production, and lipid peroxidation. Biochemical Pharmacology, 59(7), 753–762.CrossRefPubMedGoogle Scholar
  28. Kalmijn, S., Launer, L. J., Stolk, R. P., de Jong, F. H., Pols, H. A., et al (1998). A prospective study on cortisol, dehydroepiandrosterone sulfate, and cognitive function in the elderly. The Journal of Clinical Endocrinology and Metabolism, 83(10), 3487–3492.CrossRefPubMedGoogle Scholar
  29. Kemnitz, J. W., Roecker, E. B., Haffa, A. L., Pinheiro, J., Kurzman, I., et al (2000). Serum dehydroepiandrosterone sulfate concentrations across the life span of laboratory-housed rhesus monkeys. Journal Medical of Primatology, 29(5), 330–337.CrossRefGoogle Scholar
  30. Kroboth, P. D., Salek, F. S., Pittenger, A. L., Fabian, T. J., & Frye, R. F. (1999). DHEA and DHEA-S: A review. Journal of Clinical Pharmacology, 39(4), 327–348.CrossRefPubMedGoogle Scholar
  31. Laatikainen, T., Laitinen, E., & Vihko, R. (1971). Secretion of free and sulfate-conjugated neutral steroids by the human testis: Effect of administration of human chorionic gonadotropin. The Journal of Clinical Endocrinology & Metabolism, 32(1), 59–64.CrossRefGoogle Scholar
  32. Labrie, F. (2010). DHEA, important source of sex steroids in men and even more in women. Progress in Brain Research, 182, 97–148.CrossRefPubMedGoogle Scholar
  33. Labrie, F., Bélanger, A., Cusan, L., Gomez, J.-L., & Candas, B. (1997). Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. The Journal of Clinical Endocrinology and Metabolism, 82(8), 2396–2402.CrossRefPubMedGoogle Scholar
  34. Labrie, F., Luu-The, V., Belanger, A., Lin, S. X., Simard, J., et al (2005). Is dehydroepiandrosterone a hormone? The Journal of Endocrinology, 187(2), 169–196.CrossRefPubMedGoogle Scholar
  35. Lampe, J. W., Fredstrom, S. B., Slavin, J. L., & Potter, J. D. (1993). Sex differences in colonic function: A randomised trial. Gut, 34(4), 531–536.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Laughlin, G. A., & Barrett-Connor, E. (2000). Sexual dimorphism in the influence of advanced aging on adrenal hormone levels: The rancho Bernardo study. The Journal of Clinical Endocrinology and Metabolism, 85(10), 3561–3568.PubMedGoogle Scholar
  37. Leblanc, M., Labrie, C., Belanger, A., Candas, B., & Labrie, F. (2002). Pharmacokinetics of oral dehydroepiandrosterone (DHEA) in the ovariectomised cynomolgus monkey. The Journal of Steroid Biochemistry and Molecular Biology, 81(2), 159–164.CrossRefPubMedGoogle Scholar
  38. Liu, T. C., Lin, C. H., Huang, C. Y., Ivy, J. L., & Kuo, C. H. (2013). Effect of acute DHEA administration on free testosterone in middle-aged and young men following high-intensity interval training. European Journal of Applied Physiology, 113(7), 1783–1792.CrossRefPubMedGoogle Scholar
  39. Majewska, M. D. (1995). Neuronal actions of dehydroepiandrosterone: Possible roles in brain development, aging, memory, and affect. Annals of the New York Academy of Sciences, 774, 111–120.CrossRefPubMedGoogle Scholar
  40. Maninger, N., Capitanio, J. P., Mason, W. A., Ruys, J. D., & Mendoza, S. P. (2010). Acute and chronic stress increase DHEAS concentrations in rhesus monkeys. Psychoneuroendocrinology, 35(7), 1055–1062.CrossRefPubMedPubMedCentralGoogle Scholar
  41. McCraty, R., Barrios-Choplin, B., Rozman, D., Atkinson, M., & Watkins, A. D. (1998). The impact of a new emotional self-management program on stress, emotions, heart rate variability, DHEA and cortisol. Integrative Physiological and Behavioral Science, 33(2), 151–170.CrossRefPubMedGoogle Scholar
  42. Mesiano, S., & Jaffe, R. B. (1997). Developmental and functional biology of the primate fetal adrenal cortex. Endocrine Reviews, 18(3), 378–403.PubMedGoogle Scholar
  43. Meusy-Dessolle, N., & Dang, D. C. (1985). Plasma concentrations of testosterone, dihydrotestosterone, delta 4-androstenedione, dehydroepiandrosterone and oestradiol-17 beta in the crab-eating monkey (Macaca fascicularis) from birth to adulthood. Journal of Reproduction and Fertility, 74(2), 347–359.CrossRefPubMedGoogle Scholar
  44. Mobbs, C. V. (1998). Dehydroepiandrosterone and aging. In C. V. Mobbs, P. R. Hof (Eds.), Functional endocrinology of aging (Vol. 29, pp. 217–227). Basel: Karger Publishers.Google Scholar
  45. Möhle, U., Heistermann, M., Palme, R., & Hodges, J. K. (2002). Characterization of urinary and fecal metabolites of testosterone and their measurement for assessing gonadal endocrine function in male nonhuman primates. General and Comparative Endocrinology, 129(3), 135–145.CrossRefPubMedGoogle Scholar
  46. Monfort, S. L. (2003). Non-invasive endocrine measures of reproduction and stress in wild populations. In W. Holt, A. Pickard, J. Rodger, D. Wildt (Eds.), Reproductive science and integrated conservation conservation biology (Vol. 8, pp. 147–165). Cambridge: Cambridge University Press.Google Scholar
  47. Moran, F. M., Chen, J., Gee, N. A., Lohstroh, P. N., & Lasley, B. L. (2013). Dehydroepiandrosterone sulfate levels reflect endogenous luteinizing hormone production and response to human chorionic gonadotropin challenge in older female macaque (Macaca fascicularis). Menopause, 20(3), 329–335.PubMedPubMedCentralGoogle Scholar
  48. Muehlenbein, M. P., Campbell, B. C., Richards, R. J., Svec, F., Phillippi-Falkenstein, K. M., Murchison, M. A., & Myers, L. (2003). Dehydroepiandrosterone-sulfate as a biomarker of senescence in male non-human primates. Experimental Gerontology, 38(10), 1077–1085.CrossRefPubMedGoogle Scholar
  49. Neunzig, J., & Bernhardt, R. (2014). Dehydroepiandrosterone sulfate (DHEAS) stimulates the first step in the biosynthesis of steroid hormones. PLoS One, 9(2), e89727.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Nieschlag, E., Loriaux, D. L., Ruder, H., Zucker, I., Kirschner, M., & Lipsett, M. (1973). The secretion of dehydroepiandrosterone and dehydroepiandrosterone sulphate in man. Journal of Endocrinology, 57(1), 123–134.CrossRefPubMedGoogle Scholar
  51. Orentreich, N., Brind, J. L., Rizer, R. L., & Vogelman, J. H. (1984). Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. The Journal of Clinical Endocrinology & Metabolism, 59(3), 551–555.CrossRefGoogle Scholar
  52. Palme, R. (2005). Measuring fecal steroids: Guidelines for practical application. Annals of the New York Academy of Sciences, 1046, 75–80.CrossRefPubMedGoogle Scholar
  53. Prall, S. P., Ambu, L., Nathan, S., Alsisto, S., Ramirez, D., & Muehlenbein, M. P. (2015). Androgens and innate immunity in rehabilitated semi-captive orangutans (Pongo pygmaeus morio) from Malaysian Borneo. American Journal of Primatology, 77(6), 642–650.CrossRefPubMedGoogle Scholar
  54. Rainey, W. E., Rehman, K. S., & Carr, B. R. (2004). The human fetal adrenal: Making adrenal androgens for placental estrogens. Seminars in Reproductive Medicine, 22(4), 327–336.CrossRefPubMedGoogle Scholar
  55. Remer, T., Manz, F., & Pietrzik, K. (1995). Re-examination of the effect of hCG on plasma levels and renal excretion of dehydroepiandrosterone sulfate in healthy males. Steroids, 60(2), 204–209.CrossRefPubMedGoogle Scholar
  56. Saez, J. M., & Bertrand, J. (1968). Studies on testicular function in children: Plasma concentrations of testosterone, dehydroepiandrosterone and its sulfate before and after stimulation with human chorionic gonadotrophin (1). Steroids, 12(6), 749–761.CrossRefPubMedGoogle Scholar
  57. Scott, L. V., Svec, F., & Dinan, T. (2000). A preliminary study of dehydroepiandrosterone response to low-dose ACTH in chronic fatigue syndrome and in healthy subjects. Psychiatry Research, 97(1), 21–28.CrossRefPubMedGoogle Scholar
  58. Seraphin, S. B., Whitten, P. L., & Reynolds, V. (2008). The influence of age on fecal steroid hormone levels in male Budongo Forest chimpanzees (Pan troglodytes schweinfurthii). American Journal of Primatology, 70(7), 661–669.CrossRefPubMedGoogle Scholar
  59. Siegel, S. F., Finegold, D. N., Lanesx, R., & Lee, P. A. (1990). ACTH stimulation tests and plasma dehydroepiandrosterone sulfate levels in women with hirsutism. The New England Journal of Medicine, 323(13), 849–854.CrossRefPubMedGoogle Scholar
  60. Sorwell, K. G., & Urbanski, H. F. (2010). Dehydroepiandrosterone and age-related cognitive decline. Age (Dordrecht, Netherlands), 32(1), 61–67.CrossRefGoogle Scholar
  61. Spivak, B., Maayan, R., Kotler, M., Mester, R., Gil-Ad, I., et al (2000). Elevated circulatory level of GABA(a): |antagonistic neurosteroids in patients with combat-related post-traumatic stress disorder. Psychological Medicine, 30(5), 1227–1231.CrossRefPubMedGoogle Scholar
  62. Takeshita, R. S., Huffman, M. A., Bercovitch, F. B., Mouri, K., & Shimizu, K. (2013). The influence of age and season on fecal dehydroepiandrosterone-sulfate (DHEAS) concentrations in Japanese macaques (Macaca fuscata). General and Comparative Endocrinology, 191C, 39–43.CrossRefGoogle Scholar
  63. Takeshita, R. S., Huffman, M. A., Mouri, K., Shimizu, K., & Bercovitch, F. B. (2016). Dead or alive? Predicting fetal loss in Japanese macaques (Macaca fuscata) by fecal metabolites. Animal Reproduction Science, 175, 33–38.CrossRefPubMedGoogle Scholar
  64. Takeshita, R. S. C., Bercovitch, F. B., Huffman, M. A., Mouri, K., Garcia, C., Rigaill, L., & Shimizu, K. (2014). Environmental, biological, and social factors influencing fecal adrenal steroid concentrations in female Japanese macaques (Macaca fuscata). American Journal of Primatology, 76(11), 1084–1093.CrossRefPubMedGoogle Scholar
  65. Takeshita, R. S. C., Huffman, M. A., Kinoshita, K., & Bercovitch, F. B. (2017). Effect of castration on social behavior and hormones in male Japanese macaques (Macaca fuscata). Physiology and Behavior, 181, 43–50.CrossRefPubMedGoogle Scholar
  66. Takeshita RSC, Bercovitch FB, Kinoshita K, Huffman MA (2018). Beneficial effect of hot spring bathing on stress levels in Japanese macaques. Primates.
  67. Touma, C., & Palme, R. (2005). Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Annals of the New York Academy of Sciences, 1046(1), 54–74.CrossRefPubMedGoogle Scholar
  68. Touma, C., Sachser, N., Mostl, E., & Palme, R. (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. General and Comparative Endocrinology, 130(3), 267–278.CrossRefPubMedGoogle Scholar
  69. Vallee, M., Mayo, W., & Le Moal, M. (2001). Role of pregnenolone, dehydroepiandrosterone and their sulfate esters on learning and memory in cognitive aging. Brain Research Reviews, 37(1–3), 301–312.CrossRefPubMedGoogle Scholar
  70. Walsh, S. W., Stanczyk, F. Z., & Novy, M. J. (1984). Daily hormonal changes in the maternal, fetal, and amniotic-fluid compartments before parturition in a primate species. The Journal of Clinical Endocrinology and Metabolism, 58(4), 629–639.CrossRefPubMedGoogle Scholar
  71. Weinstein, R., Kelch, R., Jenner, M., Kaplan, S., & Grumbach, M. (1974). Secretion of unconjugated androgens and estrogens by the normal and abnormal human testis before and after human chorionic gonadotropin. Journal of Clinical Investigation, 53(1), 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Whitten, P. L., Brockman, D. K., & Stavisky, R. C. (1998). Recent advances in noninvasive techniques to monitor hormone-behavior interactions. American Journal of Physical Anthropology, 107(Suppl 27), 1–23.CrossRefGoogle Scholar
  73. Willis, E. L., Wolf, R. F., White, G. L., & McFarlane, D. (2014). Age- and gender-associated changes in the concentrations of serum TGF-1 beta, DHEA-S and IGF-1 in healthy captive baboons (Papio hamadryas anubis). General and Comparative Endocrinology, 195, 21–27.CrossRefPubMedGoogle Scholar
  74. Yamaji, T., & Ibayashi, H. (1969). Plasma dehydroepiandrosterone sulfate in normal and pathological conditions. The Journal of Clinical Endocrinology & Metabolism, 29(2), 273–278.CrossRefGoogle Scholar
  75. Zhou, R., Bird, I. M., Dumesic, D. A., & Abbott, D. H. (2005). Adrenal hyperandrogenism is induced by fetal androgen excess in a rhesus monkey model of polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 90(12), 6630–6637.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rafaela S. C. Takeshita
    • 1
  • Fred B. Bercovitch
    • 2
  • Michael A. Huffman
    • 1
  • Kodzue Kinoshita
    • 2
  1. 1.Department of Ecology and Social Behavior, Primate Research InstituteKyoto UniversityInuyamaJapan
  2. 2.Wildlife Research CenterKyoto UniversityKyotoJapan

Personalised recommendations