Advertisement

Primate Fruit Color: Useful Concept or Alluring Myth?

  • Kim Valenta
  • Omer Nevo
  • Colin A. Chapman
Article

Abstract

While the importance of frugivorous primates as seed dispersers is well established, the question of the extent to which they exert selective pressure on fruit color phenotypes is contested. Numerous studies have identified suites of primate fruit colors, but the lack of agreement among them illustrates the difficulty of identifying the match between primate foraging behavior and the extent of primate–plant coevolution. This may indicate that primates do not shape fruit traits, at least in a consistent direction, or that the evolution of fruit color is affected by a complex array of selection pressures in which primates play only a part. Here, we review the role of primates in shaping fruit color in the context of primate color vision phenotypes, and fruit phenotypic constraints and selective pressures. To test the hypothesis that fruit color is subjected to selection pressures by primates, we offer six testable predictions aimed at disentangling the complex array of factors that can contribute to fruit color phenotypes, including animal mutualists, animal antagonists, and developmental and phylogenetic constraints of fruits. We conclude that identifying the importance of primate seed dispersers in shaping fruit visual traits is possible, but more complex than previously thought.

Keywords

Coevolution Food selection Fruit color Fruit syndrome Primate fruit syndrome Primate seed dispersal 

Notes

Acknowledgments

The authors are grateful to Drs Onja Razafindratsima, Laurence Culot, Yamato Tsuji, and Hiroki Sato for the opportunity to contribute to this special issue on primate seed dispersal, and to two anonymous reviewers whose comments greatly improved the manuscript. K. Valenta and C. A. Chapman were supported by Natural Sciences and Engineering Research Council of Canada (NSERC), International Development Research Centre (IDRC), and the Canada Research Chairs program, and O. Nevo was supported by the German Science Foundation (DFG; grant ON 2156/1-1).

Compliance with ethical standards

Conflict of interest

All authors declare they have no conflict of interest.

References

  1. Ackerly, D. (2009). Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proceedings of the National Academy of Sciences f the USA, 106, 19699–19706.CrossRefGoogle Scholar
  2. Allen, G. (1879). The colour-sense: Its origin and development. Boston: Houghton.Google Scholar
  3. Beattie, A. J., & Lyons, N. (1975). Seed dispersal in Viola (Violaceae): Adaptations and strategies. American Journal of Botany, 62, 714–722.Google Scholar
  4. Bennett, A., Cuthill, I., & Norris, K. (1994). Sexual selection and the mismeasure of color. The American Naturalist, 144, 848–860.CrossRefGoogle Scholar
  5. Birkinshaw, C. (2001). Fruit characteristics of species dispersed by the black lemur (Eulemur macaco) in the Lokobe Forest, Madagascar. Biotropica, 33, 478–486.CrossRefGoogle Scholar
  6. Böhning-Gaese, K., Gaese, B. H., & Rabemanantsoa, S. B. (1999). Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. Ecology, 80, 821–832.CrossRefGoogle Scholar
  7. Bollen, A., Donati, G., Fietz, J., Schwab, D., Ramanamanjato, J.-B., et al (2005). An intersite comparison of fruit characteristics in Madagascar: Evidence for selection pressure through abiotic constraints rather than through co-evolution. In J. L. Dew & J. P. Boublie (Eds.), Tropical Fruits and Frugivores: The Search for Strong Interactors (pp. 93–119). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  8. Bueno, R. S., Guevara, R., Ribeiro, M. C., Culot, L., Bufalo, F. S., & Galetti, M. (2013). Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. PLoS One, 8, e56252.Google Scholar
  9. Burns, K. C., Cazetta, E., Galetti, M., Valido, A., & Schaefer, H. M. (2009). Geographic patterns in fruit colour diversity: Do leaves constrain the colour of fleshy fruits? Oecologia, 159, 337–343.PubMedCrossRefGoogle Scholar
  10. Campbell, C. J., Fuentes, A., & MacKinnon, K. C. (2010). Primates in Perspective (Vol. 2). Oxford: Oxford University Press.Google Scholar
  11. Cant, J. (1979). Dispersal of Stemmadenia donnell-smithii by birds and monkeys. Biotropica, 11, 122.CrossRefGoogle Scholar
  12. Cariveau, D., Irwin, R. E., Brody, A. K., Garcia-Mayeya, L. S., & Von Der Ohe, A. (2004). Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos, 104, 15–26.CrossRefGoogle Scholar
  13. Carvalho, L. S., Davies, W. L., Robinson, P. R., & Hunt, D. M. (2012). Spectral tuning and evolution of primate short-wavelength-sensitive visual pigments. Proceedings of the Royal Society of London B: Biological Sciences, 279, 387–393.CrossRefGoogle Scholar
  14. Cazetta, E., Galetti, M., Rezende, E. L., & Schaefer, H. M. (2012). On the reliability of visual communication in vertebrate-dispersed fruits. Journal of Ecology, 100, 277–286.CrossRefGoogle Scholar
  15. Chapman, C. A. (1989). Primate seed dispersal: The fate of dispersed seeds. Biotropica, 21, 148–154.CrossRefGoogle Scholar
  16. Chapman, C. A. (1995). Primate seed dispersal: Coevolution and conservation implications. Evolutionary Anthropology, 4, 74–82.CrossRefGoogle Scholar
  17. Clark, C., Poulsen, J., Bolker, B., Connor, E., & Parker, V. (2005). Comparative seed shadows of bird-, monkey-, and wind-dispersed trees. Ecology, 86, 2684–2694.CrossRefGoogle Scholar
  18. Culot, L., Lazo, F. J. J. M., Huynen, M.-C., Poncin, P., & Heymann, E. W. (2010). Seasonal variation in seed dispersal by tamarins alters seed rain in a secondary rain forest. International Journal of Primatology, 31, 553–569.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dew, J. W., & Wright, P. C. (1998). Frugivory and seed dispersal by for species of primates in Madagascar's eastern rain forest. Biotropica, 30, 425–437.CrossRefGoogle Scholar
  20. Dominy, N. J., & Lucas, P. W. (2001). Ecological importance of trichromatic vision to primates. Nature, 410, 363–366.PubMedCrossRefGoogle Scholar
  21. Dominy, N. J., Lucas, P. W., Ramsden, L. W., Riba-Hernandez, P., Stoner, K. E., & Turner, I. M. (2002). Why are young leaves red? Oikos, 98, 163–176.CrossRefGoogle Scholar
  22. Dominy, N. J., Svenning, J.-C., & Li, W.-H. (2003). Historical contingency in the evolution of primate color vision. Journal of Human Evolution, 44, 25–45.PubMedCrossRefGoogle Scholar
  23. Eby, P. (1998). An analysis of diet specialization in frugivorous Pteropus poliocephalus (Megachiroptera) in Australian subtropical rainforest. Austral Ecology, 23, 443–456.CrossRefGoogle Scholar
  24. Endler, J. A. (1993). The color of light in forests and its implications. Ecological Monographs, 63, 1–27.CrossRefGoogle Scholar
  25. Estrada, A., & Coates-Estrada, R. (1984). Fruit eating and seed dispersal by howling monkeys (Alouatta palliata) in the tropical rain forest of Los Tuxtlas, Mexico. American Journal of Primatology, 6, 77–91.CrossRefGoogle Scholar
  26. Federman, S., Sinnott-Armstrong, M., Baden, A. L., Chapman, C. A., Daly, D. C., et al (2017). The paucity of frugivores in Madagascar may not be due to unpredictable temperatures or fruit resources. PLoS One, 12, e0168943.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Fischer, K. E., & Chapman, C. A. (1993). Frugivores and fruit syndromes: Differences in patterns at the genus and species level. Oikos, 66, 472–482.CrossRefGoogle Scholar
  28. Flörchinger, M., Braun, J., Böhning-Gaese, K., & Schaefer, H. M. (2010). Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia, 164, 151–161.PubMedCrossRefGoogle Scholar
  29. Fobes, J. L., & King, J. E. (1982). Vision: the dominant primate modality. In J. L. Fobes & J. E. King (Eds.), Primate behavior (pp. 219–243). New York: Academic.Google Scholar
  30. Garber, P. A., & Lambert, J. E. (1998). Primates as seed dispersers: ecological processes and directions for future research. American Journal of Primatology, 45, 3–8.  https://doi.org/10.1007/s10764-018-0025-y.PubMedCrossRefGoogle Scholar
  31. Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., et al (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337.PubMedCrossRefGoogle Scholar
  32. Guillotin, M., Dubost, G., & Sabatier, D. (1994). Food choice and food competition among the three major primate species of French Guiana. Journal of Zoology, 233, 551–579.CrossRefGoogle Scholar
  33. Hakala-Yatkin, M., Mantysaari, M., Mattila, H., & Tyystjarvi, E. (2010). Contributions of visible and ultraviolet parts of sunlight to photoinhibition. Plant Cell Physiology, 51, 1745–1753.PubMedCrossRefGoogle Scholar
  34. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology (Vol. 239). Oxford: Oxford University Press.Google Scholar
  35. Heesy, C. P., & Ross, C. F. (2001). Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics and cladistics. Journal of Human Evolution, 40, 111–149.PubMedCrossRefGoogle Scholar
  36. Hemingway, C. A. (1996). Morphology and phenology of seeds and whole fruit eaten by Milne-Edwards' sifaka, Propithecus diadema edwardsi, in Ranomafana National Park, Madagascar. International Journal of Primatology, 17, 637–659.CrossRefGoogle Scholar
  37. Herrera, C. M. (1982). Seasonal variations in the quality of fruits and diffuse coevolution between plants and avian dispersers. Ecology, 63, 772–785.CrossRefGoogle Scholar
  38. Herrera, C. M., Medrano, M., Rey, P. J., Sánchez-Lafuente, A. M., García, M. B., et al (2002). Interaction of pollinators and herbivores on plant fitness suggests a pathway for correlated evolution of mutualism-and antagonism-related traits. Proceedings of the National Academy of Sciences of the USA, 99, 16823–16828.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Howe, H. F. (1986). Seed dispersal by fruit-eating birds and mammals. In D. L. Murray (Ed.), Seed dispersal (pp. 123–189). San Diego: Academic.CrossRefGoogle Scholar
  40. Hunt, D. M., Dulai, K. S., Cowing, J. A., Julliot, C., Mollon, J. D., et al (1998). Molecular evolution of trichromacy in primates. Vision Research, 38, 3299–3306.PubMedCrossRefGoogle Scholar
  41. Jacobs, G. H. (2007). New World monkeys and color. International Journal of Primatology, 28, 729–759.CrossRefGoogle Scholar
  42. Jacobs, G. H. (2008). Primate color vision: A comparative perspective. Visual Neuroscience, 25, 619–633.PubMedCrossRefGoogle Scholar
  43. Jacobs, G. H., & Deegan, J. F. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology, 30, 243–256.CrossRefGoogle Scholar
  44. Jacobs, G. H., Deegan, J. F., Neitz, J., & Crognale, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research, 33, 1773–1783.PubMedCrossRefGoogle Scholar
  45. Jacobs, G. H., Neitz, M., Deegan, J. F., & Neitz, J. (1996). Trichromatic colour vision in New World monkeys. Nature, 382, 156–158.PubMedCrossRefGoogle Scholar
  46. Jacobs, R. L., MacFie, T. S., Spriggs, A. N., Baden, A. L., Morelli, T. L., et al (2017). Novel opsin gene variation in large-bodied, diurnal lemurs. Biology Letters, 13, 20170050.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a neotropical rainforest. Science, 219, 187–189.PubMedCrossRefGoogle Scholar
  48. Janzen, D. H., Miller, G., Hackforth-Jones, J., Pond, C., Hooper, K., & Janos, D. P. (1976). Two Costa Rican bat-generated seed shadows of Andira inermis (Leguminosae). Ecology, 57, 1068–1075.CrossRefGoogle Scholar
  49. Julliot, C. (1994). Frugivory and seed dispersal by red howler monkeys: Evolutionary aspect. Review d'Ecologie (La Terre et la Vie), 331–341.Google Scholar
  50. Julliot, C. (1996). Fruit choice by red howler monkeys (Alouatta seniculus) in a tropical rain forest. American Journal of Primatology, 40, 261–282.CrossRefGoogle Scholar
  51. Kaplin, B. A., & Lambert, J. E. (2002). Effectiveness of seed dispersal by Cercopithecus monkeys: Implications for seed input into degraded areas. In D. J. Levey, W. R. Silva, & M. Galetti (Eds.), Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 351–364). New York: CABI Publishing.Google Scholar
  52. Kaplin, B. A., Munyaligoga, V., & Moermond, T. C. (1998). The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica, 30, 56–71.CrossRefGoogle Scholar
  53. Kawamura, S., & Kubotera, N. (2004). Ancestral loss of short wavelength sensitive cone visual pigment in lorisiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution, 58, 314–321.PubMedCrossRefGoogle Scholar
  54. Knight, R., & Siegfried, W. (1983). Inter-relationships between type, size and colour of fruits and dispersal in southern African trees. Oecologia, 56, 405–412.PubMedCrossRefGoogle Scholar
  55. Kunz, B. K., & Linsenmair, K. E. (2010). Fruit traits in baboon diet: A comparison with plant species characteristics in West Africa. Biotropica, 42, 363–371.CrossRefGoogle Scholar
  56. Lambert, J. E. (1999). Seed handling in chimpanzees (Pan troglodytes) and redtail monkeys (Cercopithecus ascanius): Implications for understanding hominoid and cercopithecine fruit-processing strategies and seed dispersal. American Journal of Physical Anthropology, 109, 365–386.PubMedCrossRefGoogle Scholar
  57. Lambert, J. E. (2001). Red-tailed guenons (Cercopithecus ascanius) and Strychnos mitis: Evidence for plant benefits beyond seed dispersal. International Journal of Primatology, 22, 189–201.CrossRefGoogle Scholar
  58. Lambert, J. E. (2011). Primate seed dispersers as umbrella species: A case study from Kibale National Park, Uganda, with implications for Afrotropical forest conservation. American Journal of Primatology, 73, 9–24.PubMedCrossRefGoogle Scholar
  59. Lambert, J. E., & Garber, P. A. (1998). Evolutionary and ecological implications of primate seed dispersal. American Journal of Primatology, 45, 9–28.PubMedCrossRefGoogle Scholar
  60. Lätti, A. K., Riihinen, K. R., & Kainulainen, P. S. (2007). Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. Journal of Agricultural and Food Chemistry, 56, 190–196.PubMedCrossRefGoogle Scholar
  61. Le Gros Clark, W. E. (1971). The antecedents of man. Edinburgh: Edinburgh University Press.Google Scholar
  62. Leiberman, D., Hall, J. B., Swaine, M. D., & Lieberman, M. (1979). Seed dispersal by baboons in the Shai Hills, Ghana. Ecology, 60, 65–75.CrossRefGoogle Scholar
  63. Leighton, M. (1983). Vertebrate responses to fruiting seasonality within a Bornean rain forest. In S. L. Sutton, T. C. Whitmore, & A. C. Chadwick (Eds.), Tropical rain forest: Ecology and Management (pp. 181–195). Oxford: Blackwell.Google Scholar
  64. Leighton, M. (1993). Modeling dietary selectivity by Bornean orangutans: Evidence for integration of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–313.CrossRefGoogle Scholar
  65. Leighton, M., & Leighton, D. R. (1982). The relationship of size of feeding aggregate to size of food patch: Howler monkeys (Alouatta palliata) feeding in Trichilia cipo fruit trees on Barro Colorado Island. Biotropica, 14, 81–90.CrossRefGoogle Scholar
  66. Link, A., & Stevenson, P. R. (2004). Fruit dispersal syndromes in animal disseminated plants at Tinigua National Park, Colombia. Revista Chilena de Historia Natural, 77, 319–334.CrossRefGoogle Scholar
  67. Linn, C., Nojima, S., & Roelofs, W. (2005). Antagonist effects of non-host fruit volatiles on discrimination of host fruit by Rhagoletis flies infesting apple (Malus pumila), hawthorn (Crataegus spp.), and flowering dogwood (Cornus florida). Entomologia Experimentalis et Applicata, 114, 97–105.CrossRefGoogle Scholar
  68. Loiselle, B., Blendinger, P., Blake, J., & Ryder, T. (2007). Ecological redundancy in seed dispersal systems: A comparison between manakins (Aves: Pipridae) in two tropical forests. In A. J. Dennis, E. W. Schupp, R. J. Green, & D. A. Westcott (Eds.), Seed dispersal: Theory and its application in a changing world (pp. 178–195). Wallingford: CABI.CrossRefGoogle Scholar
  69. Lomáscolo, S., & Schaefer, H. (2010). Signal convergence in fruits: A result of selection by frugivores? Journal of Evolutionary Biology, 23, 614–624.PubMedCrossRefGoogle Scholar
  70. Lomascolo, S. B., Levey, D., Kimball, R. T., Bolker, B. M., & Alborn, H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the USA, 107, 14668–14672.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Martin, J. P., Doucet, S. M., Knox, R. C., & Mennill, D. J. (2011). Body size correlates negatively with the frequency of distress calls and songs of Neotropical birds. Journal of Field Ornithology, 82, 259–268.CrossRefGoogle Scholar
  72. Martins, M. M. (2008). Fruit diet of Alouatta guariba and Brachyteles arachnoides in Southeastern Brazil: Comparison of fruit type, color, and seed size. Primates, 49, 1–8.PubMedCrossRefGoogle Scholar
  73. Matsumoto, Y., Hiramatsu, C., Matsushita, Y., Ozawa, N., Ashino, R., et al (2014). Evolutionary renovation of L/M opsin polymorphism confers a fruit discrimination advantage to ateline New World monkeys. Molecular Ecology, 23, 1799–1812.PubMedPubMedCentralCrossRefGoogle Scholar
  74. McConkey, K. R., & Chivers, D. J. (2007). Influence of gibbon ranging patterns on seed dispersal distance and deposition site in a Bornean forest. Journal of Tropical Ecology, 23, 269–275.CrossRefGoogle Scholar
  75. McConkey, K. R., Aldy, F., Ario, A., & Chivers, D. J. (2002). Selection of fruit by gibbons (Hylobates muelleri × agilis) in the rain forests of Central Borneo. International Journal of Primatology, 23, 123–145.CrossRefGoogle Scholar
  76. Mollon, J. D., Bowmaker, J. K., & Jacobs, G. H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B: Biological Sciences, 222, 373–399.PubMedCrossRefGoogle Scholar
  77. Murray, K., Winnett-Murray, K., Cromie, E., Minor, M., & Meyers, E. (1993). The influence of seed packaging and fruit color on feeding preferences of American robins. Plant Ecology, 107, 217–226.Google Scholar
  78. Nathan, R., Schurr, F. M., Spiegel, O., Steinitz, O., Trakhtenbrot, A., & Tsoar, A. (2008). Mechanisms of long-distance seed dispersal. Trends in Ecology & Evolution, 23, 638–647.CrossRefGoogle Scholar
  79. Oliveira, A. C. M., & Ferrari, S. F. (2000). Seed dispersal by black-handed tamarins, Saguinus midas niger (Callitrichinae, Primates): implications for the regeneration of degraded forest habitats in eastern Amazonia. Journal of Tropical Ecology, 16, 709–716.CrossRefGoogle Scholar
  80. Ordano, M., Blendinger, P. G., Lomáscolo, S. B., Chacoff, N. P., Sánchez, M. S., et al. (2017). The role of trait combination in the conspicuousness of fruit display among bird-dispersed plants. Functional Ecology.  https://doi.org/10.1111/1365-2435.12899.
  81. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051.PubMedCrossRefGoogle Scholar
  82. Peichl, L., Kaiser, A., Rakotondraparany, F., Dubielzig, R. R., Goodman, S. M., & Kappeler, P. M. (2017). Diversity of photoreceptor arrangements in nocturnal, cathemeral and diurnal Malagasy lemurs. Journal of Comparative Neurology.  https://doi.org/10.1002/cne.24167.
  83. Regan, B. C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P., & Mollon, J. D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 356, 229–283.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Renoult, J. P., Valido, A., Jordano, P., & Schaefer, H. M. (2014). Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytologist, 201, 678–686.PubMedCrossRefGoogle Scholar
  85. Ridley, H. N. (1930). The dispersal of plants throughout the world. Ashford: Reeve.Google Scholar
  86. Ripperger, S. P., Heymann, E. W., Tschapka, M., & Kalko, E. K. (2014). Fruit characteristics associated with fruit preferences in frugivorous bats and saddle-back tamarins in Peru. Ecotropica, 20, 53–63.Google Scholar
  87. Rodriguez-Perez, J., Riera, N., & Traveset, A. (2005). Effect of seed passage through birds and lizards on emergence rate of Mediterranean species: Differences between natural and controlled conditions. Functional Ecology, 19, 699–706.CrossRefGoogle Scholar
  88. Rushmore, J., Leonhardt, S. D., & Drea, C. M. (2012). Sight or scent: Lemur sensory reliance in detecting food quality varies with feeding ecology. PLoS One, 7, 1–11.CrossRefGoogle Scholar
  89. Samuels, I., & Levey, D. (2005). Effects of gut passage on seed germination: Do experiments answer the questions they ask? Functional Ecology, 19, 365–368.CrossRefGoogle Scholar
  90. Schaefer, H. M., Schaefer, V., & Levey, D. J. (2004). How plant–animal interactions signal new insights in communication. Trends in Ecology & Evolution, 19, 577–584.CrossRefGoogle Scholar
  91. Schaefer, H. M., Valido, A., & Jordano, P. (2014). Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132516.CrossRefGoogle Scholar
  92. Schupp, E. W. (1988). Factors affecting post-dispersal seed survival in a tropical forest. Oecologia, 76, 525–530.PubMedCrossRefGoogle Scholar
  93. Schupp, E. W. (1993). Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio, 108, 15–29.Google Scholar
  94. Schupp, E. W., Jordano, P., & Gomez, J. M. (2010). Seed dispersal effectiveness revisited: A conceptual review. New Phytologist, 188, 333–335.PubMedCrossRefGoogle Scholar
  95. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.PubMedCrossRefGoogle Scholar
  96. Snodderly, D. M. (1979). Visual discriminations encountered in food foraging by a neotropical primate: Implications for the evolution of color vision. In E. H. Burtt (Ed.), The Behavioral Significance of Color (237–279). New York: Garland STPM Press.Google Scholar
  97. Stevenson, P. R., Quinones, M. J., & Ahumada, J. A. (2000). Influence of fruit availability on ecological overlap among four neotropical primates at Tinigua National Park, Colombia. Biotropica, 32, 533–544.CrossRefGoogle Scholar
  98. Stoner, K. E., Riba-Hernández, P., & Lucas, P. W. (2005). Comparative use of color vision for frugivory by sympatric species of platyrrhines. American Journal of Primatology, 67, 399–409.PubMedCrossRefGoogle Scholar
  99. Stournaras, K. E., & Schaefer, H. M. (2017). Does flower and fruit conspicuousness affect plant fitness? Contrast, color coupling and the interplay of pollination and seed dispersal in two Vaccinium species. Evolutionary Ecology, 31, 229–247.CrossRefGoogle Scholar
  100. Stournaras, K. E., Lo, E., Böhning-Gaese, K., Cazetta, E., Matthias Dehling, D., et al (2013). How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. New Phytologist, 198, 617–629.PubMedCrossRefGoogle Scholar
  101. Strauss, S. Y., & Whittall, J. B. (2006). Non-pollinator agents of selection on floral traits. In L. D. Harder, & S. C. H. Barrett (Eds.), Ecology and evolution of flowers (120–138). Oxford: Oxford University Press.Google Scholar
  102. Strauss, S. Y., Sahli, H., & Conner, J. K. (2005). Toward a more trait-centered approach to diffuse (co) evolution. New Phytologist, 165, 81–90.PubMedCrossRefGoogle Scholar
  103. Surridge, A. K., & Mundy, N. I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in Callitrichine primates. Molecular Ecology, 11, 2157–2169.PubMedCrossRefGoogle Scholar
  104. Tan, Y., & Li, W.-H. (1999). Vision: Trichromatic vision in prosimians. Nature, 402, 36.PubMedCrossRefGoogle Scholar
  105. Tan, Y., Yoder, A. D., Yamashita, N., & Li, W. H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences of the USA, 102, 14712–14716.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Terborgh, J. (1983). Five new world primates. Princeton, NJ: Princeton University Press.Google Scholar
  107. Thomas, D. (1984). Fruit intake and energy budgets of frugivorous bats. Physiological Zoology, 57, 457–467.CrossRefGoogle Scholar
  108. Traveset, A. (1998). Effect of seed passage through vertebrate frugivores' guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics, 1, 151–190.CrossRefGoogle Scholar
  109. Traveset, A., & Verdu, A. (2002). A meta-analysis of the effect of gut treatment on seed germination. In D. Levey, W. R. Silva, & M. Galetti (Eds.), Seed dispersal and frugivory: Ecology, evolution and conservation (pp. 339–350). Oxon: CABI.Google Scholar
  110. Valenta, K., & Fedigan, L. M. (2008). How much is a lot? Seed dispersal by white-faced capuchins and implications for disperser-based studies of seed dispersal systems. Primates, 49, 169–175.PubMedCrossRefGoogle Scholar
  111. Valenta, K., & Fedigan, L. M. (2009). Effects of gut passage, feces, and seed handling on latency and rate of germination in seeds consumed by capuchins (Cebus capucinus). American Journal of Physical Anthropology, 138, 486–492.PubMedCrossRefGoogle Scholar
  112. Valenta, K., Burke, R. J., Styler, S. A., Jackson, D. A., Melin, A. D., & Lehman, S. M. (2013). Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Scientific Reports, 3, 1–5.CrossRefGoogle Scholar
  113. Valenta, K., Brown, K. A., Melin, A. D., Monckton, S. K., Styler, S. A., et al (2015a). It’s not easy being blue: Are there olfactory and visual trade-offs in plant signalling? PLoS One, 10, e0131725.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Valenta, K., Brown, K. A., Rafaliarison, R. R., Styler, S. A., Jackson, D., et al (2015b). Sensory integration during foraging: The importance of fruit hardness, colour, and odour to brown lemurs. Behavioral Ecology and Sociobiology, 69, 1855–1865.CrossRefGoogle Scholar
  115. Valenta, K., Edwards, M., Rafaliarison, R. R., Johnson, S. E., Holmes, S. M., Brown, K. A., Dominy, N. J., Lehman, S. M., Parra, E. J., & Melin, A. D. (2016) Visual ecology of true lemurs suggests a cathemeral origin for the primate cone opsin polymorphism. Functional Ecology, 30, 932–942.CrossRefGoogle Scholar
  116. Valenta, K., Nevo, O., Martel, C., & Chapman, C. A. (2017). Plant attractants: Integrating insights from pollination and seed dispersal ecology. Evolutionary Ecology, 31, 249–267.CrossRefGoogle Scholar
  117. Valido, A., Schaefer, H., & Jordano, P. (2011). Colour, design and reward: Phenotypic integration of fleshy fruit displays. Journal of Evolutionary Biology, 24, 751–760.PubMedCrossRefGoogle Scholar
  118. van der Pijl, L. (1969). Principles of dispersal of higher plants. Orlando: Academic.CrossRefGoogle Scholar
  119. Vander Wall, S. B., & Longland, W. S. (2004). Diplochory: Are two seed dispersers better than one? Trends in Ecology and Evolution, 19, 155–161.PubMedCrossRefGoogle Scholar
  120. Veilleux, C. C., & Bolnick, D. A. (2009). Opsin gene polymorphism predicts trichromacy in a cathemeral lemur. American Journal of Primatology, 71, 83–90.Google Scholar
  121. Veilleux, C. C., & Cummings, M. E. (2012). Nocturnal light environments and species ecology: implications for nocturnal color vision in forests. Journal of Experimental Biology, 215, 4085–4096.PubMedCrossRefGoogle Scholar
  122. Veilleux, C. C., Louis Jr., E. E., & Bolnick, D. A. (2013). Nocturnal light environments influence color vision and signatures of selection on the OPN1SW opsin gene in nocturnal lemurs. Molecular Biology and Evolution, 30, 1420–1437.PubMedCrossRefGoogle Scholar
  123. Veilleux, C. C., Jacobs, R. L., Cummings, M. E., Louis, E. E., & Bolnick, D. A. (2014). Opsin genes and visual ecology in a nocturnal folivorous lemur. International Journal of Primatology, 35, 88–107.CrossRefGoogle Scholar
  124. Veilleux, C. C., Scarry, C. J., Di Fiore, A., Kirk, E. C., Bolnick, D. A., & Lewis, R. J. (2016). Group benefit associated with polymorphic trichromacy in a Malagasy primate (Propithecus verreauxi). Scientific Reports, 6, 38418.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Verdú, M., & Traveset, A. (2005). Early emergence enhances plant fitness: A phylogenetically controlled meta-analysis. Ecology, 86, 1385–1394.CrossRefGoogle Scholar
  126. Voigt, F. A., Bleher, B., Fietz, J., Ganzhorn, J. U., Schwab, D., & Bohning-Gaese, K. (2004). A comparison of morphological and chemical fruit traits between two sites with different frugivore assemblages. Oecologia, 141, 94–104.PubMedCrossRefGoogle Scholar
  127. Warrant, E. J., & Johnsen, S. (2013). Vision and the light environment. Current Biology, 23, 990–994.CrossRefGoogle Scholar
  128. Wheelwright, N. T., & Janson, C. H. (1985). Colors of fruit displays of bird-dispersed plants in two tropical forests. The American Naturalist, 126, 777–799.CrossRefGoogle Scholar
  129. Willson, M. F., Irvine, A., & Walsh, N. G. (1989). Vertebrate dispersal syndromes in some Australian and New Zealand plant communities, with geographic comparisons. Biotropica, 21, 133–147.CrossRefGoogle Scholar
  130. Wright, P. C., Razafindratsita, V. R., Pochron, S. T., & Jernvall, J. (2005). The key to Madagascar frugivores. In J. L. Dew & J. P. Boublie (Eds.), Tropical fruits and frugivores: The search for strong interactors (pp. 121–138). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  131. Yamagiwa, J., & Basabose, A. K. (2009). Fallback foods and dietary partitioning among Pan and Gorilla. American Journal of Physical Anthropology, 140, 739–750.PubMedCrossRefGoogle Scholar
  132. Yamashita, N., Stoner, K. E., Riba-Hernández, P., Dominy, N. J., & Lucas, P. W. (2005). Light levels used during feeding by primate species with different color vision phenotypes. Behavioral Ecology and Sociobiology, 58, 618–629.CrossRefGoogle Scholar
  133. Zoratti, L., Jaakola, L., Häggman, H., & Giongo, L. (2015). Anthocyanin profile in berries of wild and cultivated Vaccinium spp. along altitudinal gradients in the Alps. Journal of Agricultural and Food Chemistry, 63, 8641–8650.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.McGill School of the Environment and Department of AnthropologyMcGill UniversityMontrealCanada
  2. 2.Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany

Personalised recommendations