The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal

Abstract

Primates are now known to possess a keen sense of smell that serves them in various contexts, including feeding. Many primate species are frugivorous and provide essential seed dispersal services to a variety of plants. Studies of pollination ecology, and recently seed dispersal ecology, indicate that animal mutualist behavior exerts selection pressures that drive changes in flower and fruit traits. As a result, the use of olfaction in in primate feeding ecology may have affected the evolution of fruit odor in species that rely on primate seed dispersal. However, this hypothesis is seldom tested. Here, we summarize the available information on how primates may have affected the evolution of fruit odor. We ask what the chemistry of primate fruit odor may look like, what information fruit odor may convey, whether there are geographical differences in fruit odor, and what other factors may affect the odor of fruits consumed by primates. We identify many gaps in the available data and offer research questions, hypotheses, and predictions for future studies. Finally, to facilitate standardization in the field, we discuss methodological issues in the process of odor sampling and analysis.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Carol Streams, IL: Allured.

    Google Scholar 

  2. Asensio, N., Brockelman, W. Y., Malaivijitnond, S., & Reichard, U. H. (2011). Gibbon travel paths are goal oriented. Animal Cognition, 14, 395–405. https://doi.org/10.1007/s10071-010-0374-1.

    PubMed  Article  Google Scholar 

  3. Baron, G., Frahm, H. D., Bhatnagar, K. P., & Stephan, H. (1983). Comparison of brain structure volumes in insectivora and primates. III. Main olfactory bulb (MOB). Journal für Hirnforschung, 24, 551–568.

    PubMed  CAS  Google Scholar 

  4. Beekwilder, J., Alvarez-Huerta, M., Neef, E., Verstappen, F. W. A., Bouwmeester, H. J., & Aharoni, A. (2004). Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiology, 135, 1865–1878. https://doi.org/10.1104/pp.104.042580.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  5. Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B., & Blüthgen, N. (2007). Specialization, constraints, and conflicting interests in mutualistic networks. Current Biology, 17, 341–346. https://doi.org/10.1016/j.cub.2006.12.039.

    PubMed  CAS  Article  Google Scholar 

  6. Borges, R. M. (2015). Fruit and seed volatiles: Multiple stage settings, actors and props in an evolutionary play. Journal of the Indian Institute of Science, 95, 93–104.

    Google Scholar 

  7. Borges, R. M., Bessière, J. M., & Hossaert-McKey, M. (2008). The chemical ecology of seed dispersal in monoecious and dioecious figs. Functional Ecology, 22, 484–493. https://doi.org/10.1111/j.1365-2435.2008.01383.x.

    Article  Google Scholar 

  8. Borges, R. M., Bessière, J.-M., & Ranganathan, Y. (2013). Diel variation in fig volatiles across syconium development: Making sense of scents. Journal of Chemical Ecology, 39, 630–642. https://doi.org/10.1007/s10886-013-0280-5.

    PubMed  CAS  Article  Google Scholar 

  9. Boulet, M., Charpentier, M. J. E., & Drea, C. M. (2009). Decoding an olfactory mechanism of kin recognition and inbreeding avoidance in a primate. BMC Evolutionary Biology, 9, 281. https://doi.org/10.1186/1471-2148-9-281.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  10. Bushdid, C., Magnasco, M. O., Vosshall, L. B., & Keller, A. (2014). Humans can discriminate more than 1 trillion olfactory stimuli. Science, 343, 1370–1372. https://doi.org/10.1126/science.1249168.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  11. Carrigan, M. A., Uryasev, O., Frye, C. B., Eckman, B. L., Myers, C. R., et al (2015). Hominids adapted to metabolize ethanol long before human-directed fermentation. Proceedings of the National Academy of Sciences of the USA, 112, 458–463. https://doi.org/10.1073/pnas.1404167111.

    PubMed  CAS  Article  Google Scholar 

  12. Chapman, C. A., & Russo, S. E. (2007). Linking behavioral ecology with forest community structure. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 510–525). New York: Oxford University Press.

    Google Scholar 

  13. Cipollini, M. L., & Levey, D. J. (1997). Secondary metabolites of fleshy vertebrate-dispersed fruits: Adaptive hypotheses and implications for seed dispersal. The American Naturalist, 150, 346–372. https://doi.org/10.1086/286069.

    PubMed  CAS  Article  Google Scholar 

  14. Cipollini, M. L., Paulk, E., Mink, K., Vaughn, K., & Fischer, T. (2004). Defense tradeoffs in fleshy fruits: Effects of resource variation on growth, reproduction, and fruit secondary chemistry in Solanum Carolinense. Journal of Chemical Ecology, 30(1), 1–17. https://doi.org/10.1023/B:JOEC.0000013179.45661.68.

    PubMed  CAS  Article  Google Scholar 

  15. delBarco-Trillo, J., & Drea, C. M. (2014). Socioecological and phylogenetic patterns in the chemical signals of strepsirrhine primates. Animal Behaviour, 97, 249–253. https://doi.org/10.1016/j.anbehav.2014.07.009.

    Article  Google Scholar 

  16. Dobson, H. E. M. (2006). Relationship between floral fragrance composition and type of pollinator. In N. Dudareva & E. Pichersky (Eds.), Biology of floral scent (pp. 147–198). Boca Raton, FL: CRC Press. https://doi.org/10.1201/9781420004007.sec4.

    Google Scholar 

  17. Dominy, N. J. (2004). Fruits, fingers, and fermentation: The sensory cues available to foraging primates. Integrative and Comparative Biology, 44(4), 295–303. https://doi.org/10.1093/icb/44.4.295.

    PubMed  Article  Google Scholar 

  18. Dominy, N. J., Yeakel, J. D., Bhat, U., Ramsden, L., Wrangham, R. W., & Lucas, P. W. (2016). How chimpanzees integrate sensory information to select figs. Interface Focus, 6, 20160001. https://doi.org/10.1098/rsfs.2016.0001.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Donati, G., Santini, L., Eppley, T. M., Arrigo-Nelson, S. J., Balestri, M., et al (2017). Low levels of fruit nitrogen as drivers for the evolution of Madagascar’s primate communities. Scientific Reports, 7, 14406. https://doi.org/10.1038/s41598-017-13906-y.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  20. Dong, D., He, G., Zhang, S., & Zhang, Z. (2009). Evolution of olfactory receptor genes in primates dominated by birth-and-death process. Genome Biology and Evolution, 1, 258–264. https://doi.org/10.1093/gbe/evp026.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  21. Dormont, L., Bessière, J.-M., McKey, D., & Cohuet, A. (2013). New methods for field collection of human skin volatiles and perspectives for their application in the chemical ecology of human–pathogen–vector interactions. The Journal of Experimental Biology, 216, 2783–2788. https://doi.org/10.1242/jeb.085936.

    PubMed  CAS  Article  Google Scholar 

  22. Dötterl, S., & Jürgens, A. (2005). Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? Plant Systematics and Evolution, 255, 99–109. https://doi.org/10.1007/s00606-005-0344-2.

    CAS  Article  Google Scholar 

  23. Dötterl, S., Wolfe, L. M., & Jürgens, A. (2005). Qualitative and quantitative analyses of flower scent in Silene latifolia. Phytochemistry, 66, 203–213. https://doi.org/10.1016/j.phytochem.2004.12.002.

    PubMed  CAS  Article  Google Scholar 

  24. Dudareva, N., Pichersky, E., & Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiology, 135, 1893–1902. https://doi.org/10.1104/pp.104.049981.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  25. Dudley, R. (2000). Evolutionary origins of human alcoholism in primate frugivory. The Quarterly Review of Biology, 75, 3–15. https://doi.org/10.1086/393255.

    PubMed  CAS  Article  Google Scholar 

  26. Dudley, R. (2002). Fermenting fruit and the historical ecology of ethanol ingestion: Is alcoholism in modern humans an evolutionary hangover? Addiction, 97, 381–388. https://doi.org/10.1046/j.1360-0443.2002.00002.x.

    PubMed  Article  Google Scholar 

  27. Dudley, R. (2004). Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory. Integrative and Comparative Biology, 44, 315–323. https://doi.org/10.1093/icb/44.4.315.

    PubMed  CAS  Article  Google Scholar 

  28. Eriksson, O. (2014). Evolution of angiosperm seed disperser mutualisms: The timing of origins and their consequences for coevolutionary interactions between angiosperms and frugivores. Biological Reviews, 91, 168–189.

    PubMed  Article  Google Scholar 

  29. Eriksson, O., & Ehrlén, J. (1998). Secondary metabolites in fleshy fruits: Are adaptive explanations needed? The American Naturalist, 152, 905–907. https://doi.org/10.1086/286217.

    PubMed  CAS  Article  Google Scholar 

  30. Farmer, E. E. (2014). Leaf defence. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199671441.001.0001.

    Google Scholar 

  31. Flörchinger, M., Braun, J., Böhning-Gaese, K., & Schaefer, H. M. (2010). Fruit size, crop mass, and plant height explain differential fruit choice of primates and birds. Oecologia, 164, 151–161. https://doi.org/10.1007/s00442-010-1655-8.

    PubMed  Article  Google Scholar 

  32. Fobes, J. L., & King, J. E. (1982). Vision: The dominant primate modality. In J. L. Fobes & J. E. King (Eds.), Primate behavior (pp. 219–243). New York: Academic Press.

    Google Scholar 

  33. Ganzhorn, J. U., Arrigo-Nelson, S., Boinski, S., Bollen, A., Carrai, V., et al (2009). Possible fruit protein effects on primate communities in Madagascar and the Neotropics. PLoS One, 4(12), e8253. https://doi.org/10.1371/journal.pone.0008253.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  34. Gautier-Hion, A., Duplantier, J. M., Quris, R., Feer, F., Sourd, C., et al (1985). Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65, 324–337. https://doi.org/10.1007/BF00378906.

    PubMed  CAS  Article  Google Scholar 

  35. Gershenzon, J. (1994). Metabolic costs of terpenoid accumulation in higher plants. Journal of Chemical Ecology, 20, 1281–1328. https://doi.org/10.1007/BF02059810.

    PubMed  CAS  Article  Google Scholar 

  36. Gershenzon, J., & Dudareva, N. (2007). The function of terpene natural products in the natural world. Nature Chemical Biology, 3, 408–414. https://doi.org/10.1038/nchembio.2007.5.

    PubMed  CAS  Article  Google Scholar 

  37. Gervasi, D. D. L., & Schiestl, F. P. (2017). Real-time divergent evolution in plants driven by pollinators. Nature Communications, 8, 14691. https://doi.org/10.1038/ncomms14691.

    PubMed  PubMed Central  Article  Google Scholar 

  38. Gilad, Y., Wiebe, V., Przeworski, M., Lancet, D., & Pääbo, S. (2004). Loss of olfactory receptor genes coincides with the acquisition of full trichromatic vision in primates. PLoS Biology, 2, 0120–0125.

    CAS  Article  Google Scholar 

  39. Gilad, Y., Man, O., & Glusman, G. (2005). A comparison of the human and chimpanzee olfactory receptor gene repertoires. Genome Research, 15, 224–230. https://doi.org/10.1101/gr.2846405.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  40. Giovannoni, J. (2004). Genetic regulation of fruit development and ripening. The Plant Cell, 16, 170–181.

    Article  Google Scholar 

  41. Gochman, S. R., Brown, M. B., & Dominy, N. J. (2016). Alcohol discrimination and preferences in two species of nectar-feeding primate. Royal Society Open Science, 3, 160217. https://doi.org/10.1098/rsos.160217.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  42. Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: Sensory cues for health and nutritional value? Science, 311, 815–819. https://doi.org/10.1126/science.1112614.

    PubMed  CAS  Article  Google Scholar 

  43. Hernandez Salazar, L. T., Laska, M., & Rodriguez Luna, E. (2003). Olfactory sensitivity for aliphatic esters in spider monkeys (Ateles geoffroyi). Behavioral Neuroscience, 117, 1142–1149. https://doi.org/10.1037/0735-7044.117.6.1142.

    PubMed  CAS  Article  Google Scholar 

  44. Hiramatsu, C., Melin, A. D., Aureli, F., Schaffner, C. M., Vorobyev, M., & Kawamura, S. (2009). Interplay of olfaction and vision in fruit foraging of spider monkeys. Animal Behaviour, 77, 1421–1426. https://doi.org/10.1016/j.anbehav.2009.02.012.

    Article  Google Scholar 

  45. Hodgkison, R., Ayasse, M., Kalko, E. K. V., Häberlein, C., Schulz, S., et al (2007). Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of Paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). Journal of Chemical Ecology, 33, 2097–2110. https://doi.org/10.1007/s10886-007-9367-1.

    PubMed  CAS  Article  Google Scholar 

  46. Hodgkison, R., Ayasse, M., Häberlein, C., Schulz, S., Zubaid, A., et al (2013). Fruit bats and bat fruits: The evolution of fruit scent in relation to the foraging behaviour of bats in the new and old world tropics. Functional Ecology, 27, 1075–1084. https://doi.org/10.1111/1365-2435.12101.

    Article  Google Scholar 

  47. Hübener, F., & Laska, M. (1998). Assessing olfactory performance in an old world primate, Macaca nemestrina. Physiology & Behavior, 64, 521–527. https://doi.org/10.1016/S0031-9384(98)00099-7.

    Article  Google Scholar 

  48. Jacobs, G. H. (2009). Evolution of colour vision in mammals. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 2957–2967. https://doi.org/10.1098/rstb.2009.0039.

    PubMed  CAS  Article  Google Scholar 

  49. Janmaat, K. R. L., Ban, S. D., & Boesch, C. (2013). Chimpanzees use long-term spatial memory to monitor large fruit trees and remember feeding experiences across seasons. Animal Behaviour, 86, 1183–1205. https://doi.org/10.1016/j.anbehav.2013.09.021.

    Article  Google Scholar 

  50. Janson, C. H. (1983). Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science, 219, 187–189. https://doi.org/10.1126/science.219.4581.187.

    PubMed  CAS  Article  Google Scholar 

  51. Janson, C. H., & Byrne, R. W. (2007). What wild primates know about resources: Opening up the black box. Animal Cognition, 10, 357–367. https://doi.org/10.1007/s10071-007-0080-9.

    PubMed  Article  Google Scholar 

  52. Johnson, E. J. (2002). The role of carotenoids in human health. Nutrition in Clinical Care, 5, 56–65. https://doi.org/10.1046/j.1523-5408.2002.00004.x.

    PubMed  Article  Google Scholar 

  53. Kessler, A. (2015). The information landscape of plant constitutive and induced secondary metabolite production. Current Opinion in Insect Science, 8, 47–53. https://doi.org/10.1016/j.cois.2015.02.002.

    Article  Google Scholar 

  54. Knauer, A. C., & Schiestl, F. P. (2015). Bees use honest floral signals as indicators of reward when visiting flowers. Ecology Letters, 18, 135–143. https://doi.org/10.1111/ele.12386.

    PubMed  CAS  Article  Google Scholar 

  55. Knudsen, J. T., Eriksson, R., Gershenzon, J., & Ståhl, B. (2006). Diversity and distribution of floral scent. The Botanical Review, 72, 1–120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2.

  56. Kücklich, M., Möller, M., Marcillo, A., Einspanier, A., Weiß, B. M., et al (2017). Different methods for volatile sampling in mammals. PLoS One, 12, e0183440. https://doi.org/10.1371/journal.pone.0183440.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  57. Langergraber, K. E., Watts, D. P., Vigilant, L., & Mitani, J. C. (2017). Group augmentation, collective action, and territorial boundary patrols by male chimpanzees. Proceedings of the National Academy of Sciences of the USA, 114, 7337–7342.

    PubMed  CAS  Article  Google Scholar 

  58. Laska, M., & Freyer, D. (1997). Olfactory discrimination ability for aliphatic esters in squirrel monkeys and humans. Chemical Senses, 22, 457–465. https://doi.org/10.1093/chemse/22.4.457.

    PubMed  CAS  Article  Google Scholar 

  59. Laska, M., & Hudson, R. (1993). Discriminating parts from the whole: Determinants of odor mixture perception in squirrel monkeys, Saimiri sciureus. Journal of Comparative Physiology A: Molecular and Integrative Physiology, 173, 249–256.

    CAS  Article  Google Scholar 

  60. Laska, M., & Seibt, A. (2002a). Olfactory sensitivity for aliphatic esters in squirrel monkeys and pigtail macaques. Behavioural Brain Research, 134, 165–174. https://doi.org/10.1016/S0166-4328(01)00464-8.

    PubMed  CAS  Article  Google Scholar 

  61. Laska, M., & Seibt, A. (2002b). Olfactory sensitivity for aliphatic alcohols in squirrel monkeys and pigtail macaques. The Journal of Experimental Biology, 205, 1633–1643.

    PubMed  CAS  Google Scholar 

  62. Laska, M., Seibt, A., & Weber, A. (2000). “Microsmatic” primates revisited: Olfactory sensitivity in the squirrel monkey. Chemical Senses, 25, 47–53. https://doi.org/10.1093/chemse/25.1.47.

    PubMed  CAS  Article  Google Scholar 

  63. Laska, M., Wieser, A., Rivas Bautista, R. M., & Hernandez Salazar, L. T. (2004). Olfactory sensitivity for carboxylic acids in spider monkeys and pigtail macaques. Chemical Senses, 29, 101–109. https://doi.org/10.1093/chemse/bjh010.

    PubMed  Article  Google Scholar 

  64. Laska, M., Genzel, D., & Wieser, A. (2005). The number of functional olfactory receptor genes and the relative size of olfactory brain structures are poor predictors of olfactory discrimination performance with enantiomers. Chemical Senses, 30, 171–175. https://doi.org/10.1093/chemse/bji013.

    PubMed  CAS  Article  Google Scholar 

  65. Laska, M., Höfelmann, D., Huber, D., & Schumacher, M. (2006a). The frequency of occurrence of acyclic monoterpene alcohols in the chemical environment does not determine olfactory sensitivity in nonhuman primates. Journal of Chemical Ecology, 32, 1317–1331. https://doi.org/10.1007/s10886-006-9090-3.

    PubMed  CAS  Article  Google Scholar 

  66. Laska, M., Rivas Bautista, R. M., & Hernandez Salazar, L. T. (2006b). Olfactory sensitivity for aliphatic alcohols and aldehydes in spider monkeys (Ateles geoffroyi). American Journal of Physical Anthropology, 129, 112–120. https://doi.org/10.1002/ajpa.20252.

    PubMed  Article  Google Scholar 

  67. Laska, M., Bautista, R. M. R., Höfelmann, D., Sterlemann, V., & Hernandez Salazar, L. T. (2007). Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human primate. The Journal of Experimental Biology, 210, 4169–4178. https://doi.org/10.1242/jeb.012237.

    PubMed  CAS  Article  Google Scholar 

  68. Lavagnini, I., & Magno, F. (2007). A statistical overview on univariate calibration, inverse regression, and detection limits: Application to gas chromatography/mass spectrometry. Mass Spectrometry Reviews, 26, 1–18. https://doi.org/10.1002/mas.20100.

    PubMed  CAS  Article  Google Scholar 

  69. Lerdau, M., & Throop, H. L. (2000). Sources of variability in isoprene emission and photosynthesis in two species of tropical wet forest trees. Biotropica, 32, 670–676. https://doi.org/10.1646/0006-3606(2000)032[0670:SOVIIE]2.0.CO;2.

  70. Link, A., & Stevenson, P. R. (2004). Fruit dispersal syndromes in animal disseminated plants at Tinigua National Park, Colombia. Revista Chilena de Historia Natural, 77, 319–334.

    Article  Google Scholar 

  71. Lledo, P., Gheusi, G., & Vincent, J. (2005). Information processing in the mammalian olfactory system. Physiological Reviews, 85, 281–317. https://doi.org/10.1152/physrev.00008.2004.

    PubMed  Article  Google Scholar 

  72. Lomáscolo, S. B., & Schaefer, H. M. (2010). Signal convergence in fruits: A result of selection by frugivores? Journal of Evolutionary Biology, 23, 614–624. https://doi.org/10.1111/j.1420-9101.2010.01931.x.

    PubMed  Article  Google Scholar 

  73. Lomáscolo, S. B., Levey, D. J., Kimball, R. T., Bolker, B. M., & Alborn, H. T. (2010). Dispersers shape fruit diversity in Ficus (Moraceae). Proceedings of the National Academy of Sciences of the USA, 107, 14668–14672.

    PubMed  Article  Google Scholar 

  74. Matsui, A., Go, Y., & Niimura, Y. (2010). Degeneration of olfactory receptor gene repertories in primates: No direct link to full trichromatic vision. Molecular Biology and Evolution, 27, 1192–1200. https://doi.org/10.1093/molbev/msq003.

    PubMed  CAS  Article  Google Scholar 

  75. McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The Plant Cell, 7, 1015–1026. https://doi.org/10.1105/tpc.7.7.1015.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  76. Melin, A. D., Fedigan, L. M., Hiramatsu, C., Hiwatashi, T., Parr, N., & Kawamura, S. (2009). Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. International Journal of Primatology, 30, 753–775. https://doi.org/10.1007/s10764-009-9383-9.

    Article  Google Scholar 

  77. Melin, A. D., Chiou, K. L., Walco, E. R., Bergstrom, M. L., & Kawamura, S. (2017). Trichromacy increases fruit intake rates of wild capuchins (Cebus capucinus imitator). Proceedings of the National Academy of Sciences of the USA, 114, 201705957.

    Article  CAS  Google Scholar 

  78. Nevo, O., & Heymann, E. W. (2015). Led by the nose: Olfaction in primate feeding ecology. Evolutionary Anthropology, 24, 137–148. https://doi.org/10.1002/evan.21458.

    PubMed  PubMed Central  Article  Google Scholar 

  79. Nevo, O., Garri, R. O., Hernandez Salazar, L. T., Schulz, S., Heymann, E. W., et al (2015). Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Scientific Reports, 5, 14895. https://doi.org/10.1038/srep14895.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  80. Nevo, O., Heymann, E. W., Schulz, S., & Ayasse, M. (2016). Fruit odor as a ripeness signal for seed-dispersing primates? A case study on four Neotropical plant species. Journal of Chemical Ecology, 42, 323–328. https://doi.org/10.1007/s10886-016-0687-x.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  81. Nevo, O., Valenta, K., Tevlin, A. G., Omeja, P., Styler, S. A., et al (2017). Fruit defence syndromes: The independent evolution of mechanical and chemical defences. Evolutionary Ecology, 31, 913–923. https://doi.org/10.1007/s10682-017-9919-y.

    Article  Google Scholar 

  82. Niimura, Y. (2012). Olfactory receptor multigene family in vertebrates: From the viewpoint of evolutionary genomics. Current Genomics, 13, 103–114. https://doi.org/10.2174/138920212799860706.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  83. Niimura, Y., Matsui, A., & Touhara, K. (2014). Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Research, 24, 1485–1496. https://doi.org/10.1101/gr.169532.113.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  84. Pellmyr, O., & Thien, L. B. (1986). Insect reproduction and floral fragrances: Keys to the evolution of the angiosperms? Taxon, 35, 76–85. https://doi.org/10.2307/1221036.

    Article  Google Scholar 

  85. Peris, J. E., Rodríguez, A., Peña, L., & Fedriani, J. M. (2017). Fungal infestation boosts fruit aroma and fruit removal by mammals and birds. Scientific Reports, 7, 5646. https://doi.org/10.1038/s41598-017-05643-z.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  86. Raguso, R. A. (2008). Wake up and smell the roses: The ecology and evolution of floral scent. Annual Review of Ecology, Evolution, and Systematics, 39, 549–569. https://doi.org/10.1146/annurev.ecolsys.38.091206.095601.

    Article  Google Scholar 

  87. Rodríguez, A., San Andrés, V., Cervera, M., Redondo, A., Alquézar, B., et al (2011). Terpene down-regulation in orange reveals the role of fruit aromas in mediating interactions with insect herbivores and pathogens. Plant Physiology, 156, 793–802. https://doi.org/10.1104/pp.111.176545.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  88. Rodríguez, A., Alquézar, B., & Peña, L. (2013). Fruit aromas in mature fleshy fruits as signals of readiness for predation and seed dispersal. New Phytologist, 197, 36–48. https://doi.org/10.1111/j.1469-8137.2012.04382.x.

    PubMed  CAS  Article  Google Scholar 

  89. Sánchez, F., Korine, C., Pinshow, B., & Dudley, R. (2004). The possible roles of ethanol in the relationship between plants and frugivores: First experiments with Egyptian fruit bats. Integrative and Comparative Biology, 44, 290–294. https://doi.org/10.1093/icb/44.4.290.

    PubMed  Article  Google Scholar 

  90. Sánchez, F., Korine, C., Steeghs, M., Laarhoven, L.-J., Cristescu, S. M., et al (2006). Ethanol and methanol as possible odor cues for Egyptian fruit bats (Rousettus aegyptiacus). Journal of Chemical Ecology, 32, 1289–1300. https://doi.org/10.1007/s10886-006-9085-0.

    PubMed  CAS  Article  Google Scholar 

  91. Schaefer, H. M., Valido, A., & Jordano, P. (2014). Birds see the true colours of fruits to live off the fat of the land. Proceedings of the Royal Society of London B: Biological Sciences, 281, 20132516. https://doi.org/10.1098/rspb.2013.2516.

    Article  Google Scholar 

  92. Schiestl, F. P. (2015). Ecology and evolution of floral volatile- mediated information transfer in plants. New Phytologist, 206, 571–577. https://doi.org/10.1111/nph.13243.

    PubMed  Article  Google Scholar 

  93. Schlumpberger, B. O., Clery, R. A., & Barthlott, W. (2006). A unique cactus with scented and possibly bat-dispersed fruits: Rhipsalis juengeri. Plant Biology, 8, 265–270. https://doi.org/10.1055/s-2005-873045.

    PubMed  CAS  Article  Google Scholar 

  94. Schwab, W., Davidovich-Rikanati, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived flavor compounds. Plant Journal, 54, 712–732. https://doi.org/10.1111/j.1365-313X.2008.03446.x.

    PubMed  CAS  Article  Google Scholar 

  95. Steiger, S. S., Fidler, A. E., Valcu, M., & Kempenaers, B. (2008). Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society of London B: Biological Science, 275, 2309–2317. https://doi.org/10.1098/rspb.2008.0607.

    CAS  Article  Google Scholar 

  96. Stephan, H., Frahm, H. D., & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35, 1–29. https://doi.org/10.1159/000155963.

    CAS  Article  Google Scholar 

  97. Teh, B. T., Lim, K., Yong, C. H., Ng, C. C. Y., Rao, S. R., et al (2017). The draft genome of tropical fruit durian (Durio zibethinus). Nature Genetics, 49, 1633–1641. https://doi.org/10.1038/ng.3972.

    PubMed  CAS  Article  Google Scholar 

  98. Tholl, D., Boland, W., Hansel, A., Loreto, F., Röse, U. S. R., & Schnitzler, J.-P. (2006). Practical approaches to plant volatile analysis. The Plant Journal, 45, 540–560. https://doi.org/10.1111/j.1365-313X.2005.02612.x.

    PubMed  CAS  Article  Google Scholar 

  99. Valenta, K., Burke, R. J., Styler, S. A., Jackson, D. A., Melin, A. D., & Lehman, S. M. (2013). Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Scientific Reports, 3, 2424. https://doi.org/10.1038/srep02424.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Valenta, K., Brown, K. A., Melin, A. D., Monckton, S. K., Styler, S. A., et al (2015a). It’s not easy being blue: Are there olfactory and visual trade-offs in plant signalling? PLoS One, 10, e0131725. https://doi.org/10.1371/journal.pone.0131725.

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  101. Valenta, K., Brown, K. A., Rafaliarison, R. R., Styler, S. A., Jackson, D., et al (2015b). Sensory integration during foraging: The importance of fruit hardness, colour, and odour to brown lemurs. Behavioral Ecology and Sociobiology. https://doi.org/10.1007/s00265-015-1998-6.

  102. Valenta, K., Edwards, M., Rafaliarison, R. R., Johnson, S. E., Holmes, S. M., et al (2016a). Visual ecology of true lemurs suggests a cathemeral origin for the primate cone opsin polymorphism. Functional Ecology, 30(6), 932–942. https://doi.org/10.1111/1365-2435.12575.

    Article  Google Scholar 

  103. Valenta, K., Miller, C. N., Monckton, S. K., Melin, A. D., Lehman, S. M., et al (2016b). Fruit ripening signals and cues in a Madagascan dry forest: Haptic indicators reliably indicate fruit ripeness to dichromatic lemurs. Evolutionary Biology, 43, 344–355. https://doi.org/10.1007/s11692-016-9374-7.

    Article  Google Scholar 

  104. Valenta, K., Nevo, O., Martel, C., & Chapman, C. A. (2017). Plant attractants: Integrating insights from seed dispersal and pollination ecology. Evolutionary Ecology, 31, 249–267. https://doi.org/10.1007/s10682-016-9870-3.

    Article  Google Scholar 

  105. Vorobyev, M., Osorio, D., Bennett, A. T. D., Marshall, N. J., & Cuthill, I. C. (1998). Tetrachromacy, oil droplets and bird plumage colours. Journal of Comparative Physiology, 183, 621–633. https://doi.org/10.1007/s003590050286.

    PubMed  CAS  Article  Google Scholar 

  106. Weiss, K. M. (2014). I smell a rat! (and 999,999,999,999 other things, too). Evolutionary Anthropology, 23, 166–171. https://doi.org/10.1002/evan.21424.

    PubMed  Article  Google Scholar 

  107. Whitehead, S. R., & Bowers, M. D. (2013). Evidence for the adaptive significance of secondary compounds in vertebrate-dispersed fruits. The American Naturalist, 182, 563–577. https://doi.org/10.1086/673258.

    PubMed  Article  Google Scholar 

  108. Wright, P. C., Razafindratsita, V. R., Pochron, S. T., & Jernvall, J. (2005). The key to Madagascar frugivores. In J. L. Dew & J. P. Boubli (Eds.), Tropical fruits and frugivores: The search for strong interactors (pp. 121–138). Dordrecht, the Netherlands: Springer.

    Google Scholar 

  109. Zhang, B., Liu, C., Wang, Y., Yao, X., Wang, F., Wu, J., & King, G. J. (2015). Disruption of a carotenoid cleavage dioxygenase 4 gene converts flower colour from white to yellow in Brassica species. New Phytologist, 206, 1513–1526. https://doi.org/10.1111/nph.13335.

    PubMed  CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank Hiroki Sato, Laurence Culot, Yamato Tsuji, and Onja Razafindratsima for inviting us to contribute to this special issue. We also thank Joanna Setchell, Onja Razafindratsima, and three anonymous reviewers for helpful comments on a previous draft of this manuscript. O. Nevo was funded by a German Science Foundation grant (NE 2156/1-1) while working on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Omer Nevo.

Additional information

Handling Editor: Joanna M. Setchell

Electronic supplementary material

ESM 1

(DOCX 21 kb)

ESM 2

(XLS 42 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nevo, O., Valenta, K. The Ecology and Evolution of Fruit Odor: Implications for Primate Seed Dispersal. Int J Primatol 39, 338–355 (2018). https://doi.org/10.1007/s10764-018-0021-2

Download citation

Keywords

  • Coevolution
  • Fruit aroma
  • Fruit secondary metabolites
  • Olfaction
  • Sensory ecology