International Journal of Primatology

, Volume 38, Issue 2, pp 151–171 | Cite as

Reliance on Exotic Plants by Two Groups of Threatened Samango Monkeys, Cercopithecus albogularis labiatus, at Their Southern Range Limit

  • Kirsten Wimberger
  • Katarzyna Nowak
  • Russell A. Hill


Understanding how threatened species adapt their behavior to landscapes shaped by humans is increasingly important to ensuring they persist in a changing world. Matrix habitats can be shared spaces where human and nonhuman primates coexist. We set out to determine how an endemic, threatened forest specialist, the frugivorous, arboreal samango monkey (Cercopithecus albogularis labiatus), has responded to a matrix habitat made up of residential gardens and commercial plantations in Eastern Cape province, South Africa. We followed two groups from dawn to dusk for a mean of 3 days/mo for 12 mo (February 1, 2011 to January 31, 2012) using scan sampling to collect data on their diet, activity, and ranging patterns. We used resource abundance transects to describe the groups’ home ranges and monitored tree phenology to calculate fruit and seed availability indices. Monkeys from both groups consumed large quantities of exotic plant species, accounting for >50% of their overall annual diet, with seeds of the invasive black wattle (Acacia mearnsii) the most commonly consumed exotic species followed by acorns of two oak species (Quercus robur and Q. palustris.). However, monkeys responded to the availability of indigenous rather than exotic fruits and seeds and increased their consumption of exotics when indigenous fruits were less available. Although monkeys spent less time moving when feeding on exotic species compared to indigenous species, eating exotics did not free up monkeys’ time to rest or socialize, as additional time was required to process exotic foods. To offset the possible negative consequences of the monkeys’ reliance on exotic seeds, including escalating conflict between monkeys and people in gardens, we suggest gradual removal of exotic plant species in the habitat and replacement with indigenous species as one mitigation strategy.


Acacia mearnsii Black wattle Cercopithecus mitis Ecological flexibility Fallback foods Human-modified habitat 



K. Wimberger thanks Dr. A. Tordiffe, Prof J. O’Riain, and Dr. S. Boyes for tremendous support during and following fieldwork. Thanks to N. Amstrong for help in conducting plant transects and plant identification, where T. Dold and T. Trinder-Smith also helped with the latter. For GIS support thanks to N. Lindenberg and T. Slingsby at the University of Cape Town. Thanks to the Hogsback residents who allowed K. Wimberger access to their properties to follow the monkeys. We thank Hogsback resident T. Webster and South African Weather Service (SAWS) for access and use of their ambient and rainfall data. We thank University of KwaZulu-Natal for the lending of capture cages. Without the support of the following funding sources this project would not have been possible: Claude Leon Foundation, UCT URC Fellowship, JMasters NRF Fund, Novartis SAVF Wildlife Research Fund, Primate Conservation Inc., and Mazda Wildlife Fund. K. Nowak was supported by a Durham University CO-FUND Junior Research Fellowship during the preparation of this article. We thank Shane A. Richards for his valuable advice on analyses. Finally, we thank the guest editors Noemi Spagnoletti, Kimberley Hockings, and Matt McLennan; editor-in-chief Joanna Setchell; and also two anonymous reviewers for their helpful comments on our manuscript.

Compliance with Ethical Standards

Conflicts of interest

The authors have no conflict of interest and no competing financial interests.

Supplementary material

10764_2016_9949_MOESM1_ESM.docx (50 kb)
ESM 1 (DOCX 50 kb)


  1. Agostini, I., Holzmann, I., & Di Bitetti, M. S. (2010). Are howler monkey species ecologically equivalent? Trophic niche overlap in syntopic Alouatta guariba clamitans and Alouatta caraya. American Journal of Primatology, 72, 173–186.CrossRefPubMedGoogle Scholar
  2. Amato, K. R., Van Belle, S., & Wilkinson, B. (2013). A comparison of scan and focal sampling for the description of wild primate activity, diet and intragroup spatial relationships. Folia Primatologica, 84, 87–101.CrossRefGoogle Scholar
  3. Anderson, J., Rowcliffe, J., & Cowlishaw, G. (2007). Does the matrix matter? A forest primate in a complex agricultural landscape. Biological Conservation, 135(2), 212–222.CrossRefGoogle Scholar
  4. Beyer, H.L. (2004). Hawth’s analysis tools for ArcGIS. Available at:
  5. Bicca-Marques, J. C., & Calegaro-Marques, C. (1994). Exotic plant species can serve as staple food sources for wild howler populations. Folia Primatologica, 63, 209–211.CrossRefGoogle Scholar
  6. Boyes, R. S., & Perrin, M. R. (2010). Aerial surveillance by a generalist seed predator: food resource tracking by Meyer’s parrot (Poicephalus meyeri) in the Okavango Delta, Botswana. Journal of Tropical Ecology, 26, 1–12.CrossRefGoogle Scholar
  7. Breytenbach, G. J. (1988). Diet of the samango monkey in the Northern Transvaal. South African Journal of Wildlife Research, 18, 113–119.Google Scholar
  8. Bruorton, M. R., & Perrin, M. R. (1988). The anatomy of the stomach and caecum of the samango monkey, Cercopithecus mitis erythrarchus Peters, 1852. Zeitschrift fur Saugetierkunde, 53, 210–224.Google Scholar
  9. Chapman, C. A., Chapman, L. J., Wrangham, R., Hunt, K., Gebo, D., & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527–531.CrossRefGoogle Scholar
  10. Chapman, C. A., Naughton-Treves, L., Lawes, M. J., Wasserman, M. D., & Gillespie, T. R. (2007). Population declines of colobus in Western Uganda and conservation value of forest fragments. International Journal of Primatology, 28, 513–528.CrossRefGoogle Scholar
  11. Chaves, Ó. M., Stoner, K. E., & Arroyo-Rodríguez, V. (2012). Differences in diet between spider monkey groups living in forest fragments and continuous forest in Mexico. Biotropica, 44(1), 105–113.CrossRefGoogle Scholar
  12. Coleman, B. T., & Hill, R. A. (2015). Biogeographic variation in the diet and behaviour of Cercopithecus mitis. Folia Primatologica, 85, 319–334.CrossRefGoogle Scholar
  13. Dalton, D. L., Linden, B., Wimberger, K., Nupen, L. J., Tordiffe, A. S. W., et al. (2015). New insights into samango monkey speciation in South Africa. PLoS ONE, 10(3), e0117003.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Davis, M. A. (2011). Do native birds care whether their berries are native or exotic? No. Bioscience, 61, 501–502.CrossRefGoogle Scholar
  15. De Beer, H. (1986). Black wattle. Farming in South Africa, Weeds A.2411986. Pretoria, South Africa: Department of Agriculture and Water Supply.Google Scholar
  16. Estrada, A. (2009). Primate conservation in South America: The human and ecological dimensions of the problem. In P. A. Garber, A. Estrada, J. Bicca-Marques, E. Heymann, & K. Strier (Eds.), South American primates: Comparative perspectives in the study of behavior, ecology, and conservation (pp. 463–505). Developments in Primatology: Progress and Prospects. New York: Springer Science + Business Media.Google Scholar
  17. Estrada, A., Raboy, B. E., & Oliveira, L. C. (2012). Agroecosystems and primate conservation in the tropics: A review. American Journal of Primatology, 74, 696–711.CrossRefPubMedGoogle Scholar
  18. Field, A. (2005). Discovering statistics using SPSS. London: Sage.Google Scholar
  19. Fischer, J., & Lindenmayer, D. B. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography, 16, 265–280.CrossRefGoogle Scholar
  20. Foerster, S., Cords, M., & Monfort, S. L. (2012). Seasonal energetic stress in a tropical forest primate: proximate causes and evolutionary implications. PLoS ONE, 7, e50108.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Friedman, Y., & Daly, B. (Eds.) (2004). Red data book of the mammals of South Africa: A conservation assessment. South Africa: CBSG Southern Africa/Conservation Breeding Specialist Group (SSC/IUCN)/Endangered Wildlife Trust (EWT).Google Scholar
  22. Gabriel, D. N. (2013). Habitat use and activity patterns as an indication of fragment quality in a strepsirrhine primate. International Journal of Primatology, 34, 388–406.CrossRefGoogle Scholar
  23. Gautier-Hion, A., Gautier, J.-P., & Maisels, F. (1993). Seed dispersal versus seed predation: an inter-site comparison of two related African monkeys. Vegetatio, 107, 237–244.Google Scholar
  24. Guo, S., Li, B., & Watanabe, K. (2007). Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates, 48, 268–276.CrossRefPubMedGoogle Scholar
  25. Harcourt, A. H., & Stewart, K. J. (1984). Gorillas time feeding: aspect of methodology, body size, competition and diet. African Journal of Ecology, 22, 207–215.CrossRefGoogle Scholar
  26. Hemingway, C. A., & Bynum, N. (2005). The influence of seasonality on primate diet and ranging. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates (pp. 57–104). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Hill, R. A. (2005). Daylength seasonality and the thermal environment. In D. K. Brockman & C. P. van Schaik (Eds.), Primate seasonality: Implications for human evolution (pp. 197–213). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Hill, R. A., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., & Payne, H. (2003). Day length latitude and behavioural (in)flexibility in baboons (Papio cynocephalus ursinus). Behavioral Ecology and Sociobiology, 53, 278–286.Google Scholar
  29. Hill, R. A., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., et al. (2004). Day length variation and seasonal analysis of behaviour. South African Journal of Wildlife Research, 34, 39–44.Google Scholar
  30. Hockings, K. J., Anderson, J. R., & Matsuzawa, T. (2009). Use of wild and cultivated foods by chimpanzees at Bossou, Republic of Guinea: feeding dynamics in a human-influenced environment. American Journal of Primatology, 71, 636–646.CrossRefPubMedGoogle Scholar
  31. Hoffman, T. S., & O’Riain, M. J. (2011). The spatial ecology of chacma baboons (Papio ursinus) in a human-modified environment. International Journal of Primatology, 32, 308–328.CrossRefGoogle Scholar
  32. Iponga, D.M. (2011). Towards a predictive understanding of invasion success. In L. Zietsman (Ed.), Observations on environmental change in South Africa (Section 3, pp. 127–130.). Stellenbosch: SUN MeDIA.Google Scholar
  33. Isbell, L. A., & Young, T. P. (1993). Social and ecological influences on activity budgets of vervet monkeys, and their implications for group living. Behavioral Ecology and Sociobiology, 32, 377–385.CrossRefGoogle Scholar
  34. Kaplin, B. A. (2001). Ranging behavior of two species of guenons (Cercopithecus lhoesti and C. mitis doggetti) in the Nyungwe Forest Reserve, Rwanda. International Journal of Primatology, 22, 521–548.CrossRefGoogle Scholar
  35. Kaplin, B. A., & Moermond, T. C. (2000). Foraging ecology of the mountain monkey (Cercopithecus lhoesti): implications for its evolutionary history and use of disturbed forest. American Journal of Primatology, 50, 227–246.CrossRefPubMedGoogle Scholar
  36. Kaplin, B. A., Munyaligoga, V., & Moermond, T. C. (1998). The influence of temporal changes in fruit availability on diet composition and seed handling in blue monkeys (Cercopithecus mitis doggetti). Biotropica, 30, 56–71.CrossRefGoogle Scholar
  37. Kemnitz, J. W., Sapolsky, R. M., Altmann, J., Muruthi, P., Mott, G. E., & Stefanick, M. L. (2002). Effects of food availability on serum insulin and lipid concentrations in free-ranging baboons. American Journal of Primatology, 57, 13–19.CrossRefPubMedGoogle Scholar
  38. Kingdon, J., Gippoliti, S., Butynski, T. M., Lawes, M. J., Eeley, H., et al. (2008). Cercopithecus mitis. The IUCN Red List of Threatened Species 2008: e.T4221A10676022. Available at:
  39. Krebs, J.R., & Davies, N.B. (Eds.) (1993). Economic decisions and the individual. In Introduction to behavioural ecology, 3rd ed. (pp. 48–76.). Oxford: Blackwell.Google Scholar
  40. Lambert, J. E. (2002). Digestive retention times in forest guenons (Cercopithecus spp.) with reference to chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 1169–1185.CrossRefGoogle Scholar
  41. Lambert, J. E. (2007). Seasonality, fallback strategies, and natural selection: A chimpanzee and cercopithecoid model for interpreting the evolution of hominin diet. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 324–343). Oxford: Oxford University Press.Google Scholar
  42. Lambert, J.E., & Rothman, J.M. (2015). Fallback foods, optimal diets, and nutritional targets: Primate responses to varying food availability and quality. In D. Brenneis & K. B. Strier (Eds.), Annual review of anthropology (Vol. 44, pp. 493–512). Palo Alto: Annual Reviews.Google Scholar
  43. Lawes, M. J. (1991). Diet of samango monkeys (Cercopithecus mitis erythrarchus) in the Cape Vidal dune forest, South Africa. Journal of Zoology, 224, 149–173.CrossRefGoogle Scholar
  44. Lawes, M. J. (1992). Estimates of population density and correlates of the status of the samango monkey Cercopithecus mitis in Natal, South Africa. Biological Conservation, 60, 197–210.CrossRefGoogle Scholar
  45. Lawes, M. J. (2002). Conservation of fragmented populations of Cercopithecus mitis in South Africa: The role of reintroduction, corridors and metapopulation ecology. In M. E. Glenn & M. Cords (Eds.), The guenons: Diversity and adaptation in African Monkeys (pp. 375–392). New York: Kluwer Academic/ Plenum Publishers.Google Scholar
  46. Lawes, M. J., Henzi, S. P., & Perrin, M. R. (1990). Diet and feeding behaviour of samango monkeys (Cercopithecus mitis labiatus) in Ngoye Forest, South Africa. Folia Primatologica, 54, 57–69.CrossRefGoogle Scholar
  47. Lawes, M. J., Mealin, P. E., & Piper, S. E. (2000). Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented afromontane forest in South Africa. Conservation Biology, 14, 1088–1098.CrossRefGoogle Scholar
  48. Lee, D. C., Powell, V. J., & Lindsell, J. A. (2014). The conservation value of degraded forests for agile gibbons Hylobates agilis. American Journal of Primatology, 77, 76–85.CrossRefPubMedGoogle Scholar
  49. Linden, B., Linden, J., Fischer, F., & Linsenmair, K. E. (2015). Seed dispersal by South Africa’s only forest-dwelling guenon, the samango monkey (Cercopithecus mitis). African Journal of Wildlife Research, 45, 88–99.CrossRefGoogle Scholar
  50. Linden, B., Wimberger, K., Ehlers-Smith, Y., Howlett, C., & Child, M. (2016). A conservation assessment of Cercopithecus albogularis. In M. F. Child, E. Do Linh San, D. Raimondo, H. Davies-Mostert, & L. Roxburgh (Eds.), The red list of mammals of South Africa, Swaziland and Lesotho. South Africa: South African National Biodiversity Institute and Endangered Wildlife Trust.Google Scholar
  51. Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235.CrossRefGoogle Scholar
  52. McKey, D. B. (1978). Soils, vegetation, and seed-eating by black colobus monkeys. In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 423–437). Washington, DC: Smithsonian Institution Press.Google Scholar
  53. McKinney, T., Westin, J.L., & Serio-Silva, J.C. (2015). Anthropogenic habitat modification, tourist interactions and crop-raiding in howler monkeys. In M. M. Kowalewski, P. A. Garber, L. Cortéz, B. Urbani, & D. Youlatos (Eds.), Howler monkeys (pp. 281–311). Developments in Primatology: Progress and Prospects. New York: Springer Science + Business Media.Google Scholar
  54. McMahon, R.P. (1977). Aspects of the behaviour of samango monkeys (Cercopithecus (mitis) albogularis labiatus). MSc Dissertation, University of Natal.Google Scholar
  55. Mokotjomela, T. M., Musil, C. F., & Esler, K. J. (2013). Do frugivorous birds concentrate their foraging activities on those alien plants with the most abundant and nutritious fruits in the South African Mediterranean-climate region? Plant Ecology, 214, 49–59.CrossRefGoogle Scholar
  56. Mucina, L., & Geldenhuys, C.J., Eds. (2006). Afrotemperate, subtropical and azonal forests. In The vegetation of South Africa, Lesotho and Swaziland (pp. 585–614, Strelitzia 19). Pretoria: South African National Biodiversity Institute.Google Scholar
  57. Nowak, K., le Roux, A., Richards, S. A., Scheijen, C. P. J., & Hill, R. A. (2014). Human observers impact habituated samango monkeys’ perceived landscape of fear. Behavioral Ecology, 25, 1199–1204.CrossRefGoogle Scholar
  58. Nowak, K., Wimberger, K., Richards, S. A., Hill, R. A., & le Roux, A. (2017). Samango monkeys (Cercopithecus albogularis labiatus) manage risk in a highly seasonal, human-modified landscape in Amathole Mountains, South Africa. International Journal of Primatology. doi: 10.1007/s10764-016-9913-1.Google Scholar
  59. Pebsworth, P. A., Bardi, M., & Huffman, M. A. (2012). Geophagy in chacma baboons: patterns of soil consumption by age class, sex, and reproductive state. American Journal of Primatology, 74, 48–57.CrossRefPubMedGoogle Scholar
  60. Pozo-Montuy, G., Serio-Silva, J. C., Chapman, C. A., & Bonilla-Sánchez, Y. M. (2013). Resource use in a landscape matrix by an arboreal primate: evidence of supplementation in black howlers (Alouatta pigra). International Journal of Primatology, 34(4), 714–731.CrossRefGoogle Scholar
  61. Quinn, G. P., & Keough, M. J. (2002). Experimental designs and data analysis for biologists. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  62. Renton, K. (2001). Lilac-crowned parrot diet and food resource availability: resource tracking by a parrot seed predator. The Condor, 103, 62–69.CrossRefGoogle Scholar
  63. Reynoso-Cruz, J. E., Rangel-Negrin, A., Coyohua-Fuentes, A., Canales-Espinosa, D., & Dias, P. A. (2016). Measures of food intake in mantled howling monkeys. Primates, 57, 161–166.CrossRefPubMedGoogle Scholar
  64. Richardson, D. M., & van Wilgen, B. W. (2004). Invasive alien plants in South Africa: how well do we understand the ecological impacts ? South African Journal of Science, 100, 45–52.Google Scholar
  65. Riley, E. P. (2007). Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. International Journal of Primatology, 28, 107–133.CrossRefGoogle Scholar
  66. Rosenberger, A. L. (2013). Fallback foods, preferred foods, adaptive zones, and primate origins. American Journal of Primatology, 75, 883–890.CrossRefPubMedGoogle Scholar
  67. Saj, T., Sicotte, P., & Patterson, J. D. (1999). Influence of human food consumption on the time budget of vervets. International Journal of Primatology, 20, 977–994.CrossRefGoogle Scholar
  68. Schlaepfer, M. A., Sax, D. F., & Olden, J. D. (2011). The potential conservation value of non-native species. Conservation Biology, 25(3), 428–437.CrossRefPubMedGoogle Scholar
  69. Seigler, D. S. (2003). Phytochemistry of Acacia—sensu lato. Biochemical Systematics and Ecology, 31, 845–873.CrossRefGoogle Scholar
  70. Shimada, T., & Saitoh, T. (2006). Re-evaluation of the relationship between rodent populations and acorn masting: a review from the aspect of nutrients and defensive chemicals in acorns. Population Ecology, 48, 341–352.CrossRefGoogle Scholar
  71. Siex, K. S., & Struhsaker, T. T. (1999). Ecology of the Zanzibar red colobus monkey: demographic variability and habitat stability. International Journal of Primatology, 20, 163–192.CrossRefGoogle Scholar
  72. Singh, M., Kumara, H. N., Kumar, M. A., & Sharma, A. K. (2001). Behavioural responses of lion-tailed macaques (Macaca silenus) to a changing habitat in a tropical rain forest fragment in the Western Ghats, India. Folia Primatologica, 72(5), 278–291.CrossRefGoogle Scholar
  73. Skinner, J.D., & Chimimba, C.T. (Eds.) (2005). Sykes’ monkey. In The mammals of the Southern Africa subregion, 3rd ed. (pp. 227–230). Cape Town: Cambridge University Press.Google Scholar
  74. Snaith, T. V., & Chapman, C. A. (2008). Red colobus monkeys display alternative behavioral responses to the costs of scramble competition. Behavioral Ecology, 19(6), 1289–1296.CrossRefGoogle Scholar
  75. Strum, S. C. (2010). The development of primate raiding: implications for management and conservation. International Journal of Primatology, 31, 133–156.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Tesfaye, D., Fashing, P. J., Bekele, A., Mekonnen, A., & Atickem, A. (2013). Ecological flexibility in Boutourlini’s blue monkeys (Cercopithecus mitis boutourlinii) in Jibat Forest, Ethiopia: a comparison of habitat use, ranging behavior, and diet in intact and fragmented forest. International Journal of Primatology, 34, 615–640.CrossRefGoogle Scholar
  77. Van Doorn, A. C., O’Riain, M. J., & Swedell, L. (2010). The effects of extreme seasonality of climate and day length on the activity budget and diet of semi-commensal chacma baboons (Papio ursinus) in the Cape Peninsula of South Africa. American Journal of Primatology, 72, 104–112.PubMedGoogle Scholar
  78. Van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377.CrossRefGoogle Scholar
  79. Van Wilgen, B.W. (2011). Invasive alien species-introduction. In L. Zietsman (Ed.), Observations on environmental change in South Africa (Section 3, pp. 125–126). Stellenbosch: SUN MeDIA.Google Scholar
  80. Van Wilgen, B.W., & Impson, M.D. (2011). Are invasive aliens a real threat to biodiversity in South Africa? In L. Zietsman (Ed.), Observations on environmental change in South Africa (Section 3, pp. 130–134). Stellenbosch: SUN MeDIA.Google Scholar
  81. Vitousek, P. M. (1990). Biological invasions and ecosystem processes: towards an integration of population biology and ecosystems studies. Oikos, 57(1), 7–13.CrossRefGoogle Scholar
  82. Vitule, J. R. S., Freire, C. A., Vazquez, D. P., Nunez, M. A., & Simberloff, D. (2012). Revisiting the potential conservation value of non-native species. Conservation Biology, 26, 1153–1155.CrossRefPubMedGoogle Scholar
  83. Von dem Bussche, G. H., & Van der Zee, D. (1985). Damage by samango monkeys, Cercopithecus (mitis) albogularis, to pine trees in the Northern Transvaal. Southern African Forestry Journal, 134, 47–51.CrossRefGoogle Scholar
  84. Webster, T. (2009). The story of Hogsback. Hogsback: Trevor Webster.Google Scholar
  85. Wilkinson, L. (1979). Tests of significance in stepwise regression. Psychological Bulletin, 86, 168–174.CrossRefGoogle Scholar
  86. Williamson, E. A., & Feistner, A. T. C. (2011). Habituating primates: Processes, techniques, variables and ethics. In J. M. Setchell & D. J. Curtis (Eds.), Field and laboratory methods in primatology: A practical guide (pp. 33–50). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  87. Wilson, A.-L., & Downs, C. T. (2012). Fruit nutritional composition and non-nutritive traits of indigenous South African tree species. South African Journal of Botany, 78, 30–36.CrossRefGoogle Scholar
  88. Wimberger, K., & Bidner, L. (2012). A short guide to living with samango monkeys and baboons in Hogsback. Available at:
  89. Zinner, D. (1999). Relationship between feeding time and food intake in hamadryas baboons (Papio hamadryas) and the value of feeding time as predictor of food intake. Zoo Biology, 18(6), 495–505.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Biological SciencesUniversity of Cape TownCape TownSouth Africa
  2. 2.Zoology and EntomologyUniversity of Fort HareAliceSouth Africa
  3. 3.Evolutionary Anthropology Research GroupDurham UniversityDurhamUK
  4. 4.Zoology and EntomologyUniversity of the Free StateQwaqwaSouth Africa

Personalised recommendations