International Journal of Primatology

, Volume 37, Issue 6, pp 703–717 | Cite as

Influence of Fruit Availability on Fruit Consumption in a Generalist Primate, the Rhesus Macaque Macaca mulatta

  • Asmita Sengupta
  • Sindhu Radhakrishna


Fluctuations in resource availability occur in all ecosystems. To survive, species must alter their foraging strategies according to the quantity, quality, and distribution of available food. The rhesus macaque (Macaca mulatta), a commensal primate, is considered a generalist omnivore and very few studies have addressed how its feeding strategies change with respect to resource availability. We examined dietary diversity and frugivory levels in a group of rhesus macaques at the Buxa Tiger Reserve in northern India across one year. Using behavioural observations of diet and phenological monitoring, we found that although rhesus macaques fed on 107 food items including leaves, flowers, fruits, seeds, and insects, fruits made up ca. 74% of their diet. Fruit consumption correlated positively with fruit availability, but fruit preference appeared to play an important role; 16% of all the fruit species they fed on accounted for >50% of all fruit feeding observations. We suggest that afforestation programs involving preferred fruit species at the agricultural land–forest interface would prevent forest groups of rhesus macaques from gravitating toward human habitations and reduce conflict over anthropogenic resources. We further propose that the movement of certain primates in the direction of human habitations may be contingent on resource availability and food preference rather than an inherent propensity to gravitate to anthropogenic areas.


Diversity index Frugivory Fruit availability index Preference Rhesus macaque 



The authors thank the West Bengal Forest Department for necessary permits. Suresh Roy and Netra Prasad Sharma provided invaluable assistance in the field. The manuscript benefitted immensely from discussions with Dr. Kim R. McConkey. The authors also thank Dr. Joanna Setchell, Dr. Oliver Schülke, and two anonymous reviewers for their comments/suggestions that helped improve the manuscript considerably.

Supplementary material

10764_2016_9933_MOESM1_ESM.docx (27 kb)
ESM 1 (DOCX 27 kb)


  1. Agetsuma, N. (2007). Ecological function losses caused by monotonous land use induce crop raiding by wildlife on the island of Yakushima, southern Japan. Ecological Research, 22(3), 390–402.CrossRefGoogle Scholar
  2. Ahsan, M. D. F. (1994). Behavioural ecology of the hoolock gibbon (Hylobates hoolock) in Bangladesh. Ph.D. dissertation, University of Cambridge, Cambridge.Google Scholar
  3. Albert, A., Hambuckers, A., Culot, L., Savini, T., & Huynen, M.-C. (2013). Frugivory and seed dispersal by northern pigtailed macaques (Macaca leonina) in Thailand. International Journal of Primatology, 34(1), 170–193.CrossRefGoogle Scholar
  4. Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49(3), 227–267.CrossRefPubMedGoogle Scholar
  5. Altmann, S. A. (1998). Foraging for survival: Yearling baboons in Africa. Chicago: University of Chicago Press.Google Scholar
  6. Altmann, S. A. (2009). Fallback foods, eclectic omnivores, and the packaging problem. American Journal of Physical Anthropology, 140(4), 615–629.CrossRefPubMedGoogle Scholar
  7. Baker, M., & Shutt, A. (2005). Managing monkeys and mangos. In J. D. Paterson & J. Wallis (Eds.), Commensalism and conflict: The human-primate interface (pp. 445–463). Norman: American Society of Primatologists.Google Scholar
  8. Bocian, C. M. (1997). Niche separation of black-and-white colobus monkeys (Colobus angolensis and C. guereza) in the Ituri Forest. Ph.D. dissertation, City University of New York.Google Scholar
  9. Boubli, J. P. (1999). Feeding ecology of black-headed uakaris (Cacajao melanocephalus melanocephalus) in the Pico de Neblina National Park, Brazil. International Journal of Primatology, 20(5), 719–749.CrossRefGoogle Scholar
  10. Bowler, M., & Bodmer, R. E. (2011). Diet and food choice in Peruvian red uakaris (Cacajao calvus ucayalii): selective or opportunistic seed predation? International Journal of Primatology, 32(5), 1109–1122.CrossRefGoogle Scholar
  11. Bracebridge, C. E., Davenport, T. R., & Marsden, S. J. (2012). The impact of forest disturbance on the seasonal foraging ecology of a Critically Endangered African primate. Biotropica, 44(4), 560–568.CrossRefGoogle Scholar
  12. Brugiere, D., Gautier, J.-P., Moungazi, A., & Gautier-Hion, A. (2002). Primate diet and biomass in relation to vegetation composition and fruiting phenology in a rain forest in Gabon. International Journal of Primatology, 23(5), 999–1024.CrossRefGoogle Scholar
  13. Chapman, C., Chapman, L. J., Wrangham, R., Hunt, K., Gebo, D., & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527–531.CrossRefGoogle Scholar
  14. Clymer, G. A. (2006). Foraging responses to nutritional pressures in two species of Cercopithecines: Macaca mulatta and Papio ursinus. Ph.D. dissertation, Georgia State University.Google Scholar
  15. Codron, D., Lee‐Thorp, J. A., Sponheimer, M., de Ruiter, D., & Codron, J. (2006). Inter‐and intra-habitat dietary variability of chacma baboons (Papio ursinus) in South African savannas based on fecal δ13C, δ15N, and% N. American Journal of Physical Anthropology, 129(2), 204–214.CrossRefPubMedGoogle Scholar
  16. Cunningham, E. P., & Janson, C. H. (2006). Pithecia pithecia’s behavioral response to decreasing fruit abundance. American Journal of Primatology, 68(5), 491–497.CrossRefPubMedGoogle Scholar
  17. Dew, J. L. (2005). Foraging, food choice, and food processing by sympatric ripe-fruit specialists: Lagothrix lagotricha poeppigii and Ateles belzebuth belzebuth. International Journal of Primatology, 26(5), 1107–1135.CrossRefGoogle Scholar
  18. Dove, M. R. (1993). The responses of Dayak and bearded pig to mast-fruiting in Kalimantan: An analysis of nature-culture analogies. In C. M. Hladik, A. Hladik, O. F. Linares, H. Pagezy, A. Semple, & M. Hadley (Eds.), Tropical forests, people and food: Biocultural interactions and application to development (pp. 113–123). Paris: Parthenon Publishing.Google Scholar
  19. Felton, A. M., Felton, A., Wood, J. T., & Lindenmayer, D. B. (2008). Diet and feeding ecology of the Peruvian spider monkey (Ateles chamek) in a Bolivian semihumid forest: the importance of Ficus as a staple food resource. International Journal of Primatology, 29(2), 379–403.CrossRefGoogle Scholar
  20. Fooden, J. (2000). Systematic review of the rhesus macaque, Macaca mulatta (Zimmermann, 1780). Fieldiana Zoology, New Series, 96, 1–180.Google Scholar
  21. Giraldo, P., Gómez-Posada, C., Martinez, J., & Kattan, G. (2007). Resource use and seed dispersal by red howler monkeys (Alouatta seniculus) in a Colombian Andean Forest. Neotropical Primates, 14(2), 55–64.CrossRefGoogle Scholar
  22. Goldstein, S. J., & Richard, A. F. (1989). Ecology of rhesus macaques (Macaca mulatta) in northwest Pakistan. International Journal of Primatology, 10(6), 531–567.CrossRefGoogle Scholar
  23. Hanya, G. (2004). Diet of a Japanese macaque troop in the coniferous forest of Yakushima. International Journal of Primatology, 25(1), 55–71.CrossRefGoogle Scholar
  24. Hill, R. A., & Dunbar, R. I. M. (2002). Climatic determinants of diet and foraging behaviour in baboons. Evolutionary Ecology, 16(6), 579–593.CrossRefGoogle Scholar
  25. Huang, Z., Huang, C., Tang, C., Huang, L., Tang, H., et al. (2015). Dietary adaptations of Assamese macaques (Macaca assamensis) in limestone forests in southwest China. American Journal of Primatology, 77(2), 171–185.CrossRefPubMedGoogle Scholar
  26. IUCN (2016). IUCN red list of threatened species. Version. 2016.2. Available at: Accessed 1 Apr 2016.
  27. Janson, C. H., & Chapman, C. A. (1999). Resources and primate community structure. In J. G. Fleagle, C. Janson, & K. E. Reed (Eds.), Primate communities (pp. 237–267). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Johnson, E. (2000). Food neophobia in semi-free ranging rhesus macaques: the effects of food limitation and food source. American Journal of Primatology, 50(1), 25–35.CrossRefPubMedGoogle Scholar
  29. Julliot, C. (1996). Seed dispersal by red howling monkeys (Alouatta seniculus) in the tropical rain forest of French Guiana. International Journal of Primatology, 17(2), 239–258.CrossRefGoogle Scholar
  30. Krishnadas, M., Chandrasekhara, K., & Kumar, A. (2011). The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. American Journal of Primatology, 73(12), 1250–1260.CrossRefPubMedGoogle Scholar
  31. Kunz, B. A., & Linsenmair, K. E. (2008). The role of olive baboons as seed dispersers in the savannah‐forest mosaic of West Africa. Journal of Tropical Ecology, 24, 235–246.CrossRefGoogle Scholar
  32. Lindburg, D. G. (1977). Feeding behavior and diet of rhesus macaques (Macaca mulatta) in a Siwalik forest in norther India. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 223–249). London: Academic.CrossRefGoogle Scholar
  33. Link, A., Galvis, N., Marquez, M., Guerrero, J., Solano, C., & Stevenson, P. R. (2012). Diet of the critically endangered brown spider monkey (Ateles hybridus) in an inter‐Andean lowland rainforest in Colombia. American Journal of Primatology, 74(12), 1097–1105.CrossRefPubMedGoogle Scholar
  34. Marshall, A. J., Boyko, C. M., Feilen, K. L., Boyko, R. H., & Leighton, M. (2009). Defining fallback foods and assessing their importance in primate ecology and evolution. American Journal of Physical Anthropology, 140(4), 603–614.CrossRefPubMedGoogle Scholar
  35. McConkey, K. R., Aldy, F., Ario, A., & Chivers, D. J. (2002). Selection of fruit by gibbons (Hylobates muelleri × agilis) in the rain forests of Central Borneo. International Journal of Primatology, 23(1), 123–145.CrossRefGoogle Scholar
  36. Menon, S., & Poirier, F. E. (1996). Lion-tailed macaques (Macaca silenus) in a disturbed forest fragment: activity patterns and time budget. International Journal of Primatology, 17(6), 969–985.CrossRefGoogle Scholar
  37. Milton, K. (1987). Primate diets and gut morphology: implications for hominid evolution. Food and evolution: toward a theory of human food habits, pp. 93–115.Google Scholar
  38. Mourthé, I. (2014). Response of frugivorous primates to changes in fruit supply in a northern Amazonian forest. Brazilian Journal of Biology, 74(3), 720–727.CrossRefGoogle Scholar
  39. National Research Council. (1981). Techniques for the study of primate population ecology. Washington, DC: National Research Council (NRC), National Academy Press.Google Scholar
  40. Naughton-Treves, L., Treves, A., Chapman, C., & Wrangham, R. (1998). Temporal patterns of crop-raiding by primates: linking food availability in croplands and adjacent forest. Journal of Applied Ecology, 35(4), 596–606.CrossRefGoogle Scholar
  41. O’Driscoll-Worman, C., & Chapman, C. A. (2006). Densities of two frugivorous primates with respect to forest and fragment tree species composition and fruit availability. International Journal of Primatology, 27(1), 203–225.CrossRefGoogle Scholar
  42. Oates, J. F. (1977). The guereza and its food. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 275–321). London: Academic.CrossRefGoogle Scholar
  43. Peres, C. A. (1994). Diet and feeding ecology of gray woolly monkeys (Lagothrix lagotricha) in Central Amazonia: comparisons with other atelines. International Journal of Primatology, 15(3), 333–372.CrossRefGoogle Scholar
  44. Poulsen, J. R., Clark, C. J., & Smith, T. B. (2001). Seed dispersal by a diurnal primate community in the Dja Reserve, Cameroon. Journal of Tropical Ecology, 17(6), 787–808.CrossRefGoogle Scholar
  45. Radhakrishna, S., & Sinha, A. (2011). Less than wild? Commensal primates and wildlife conservation. Journal of Biosciences, 36, 1–5.CrossRefGoogle Scholar
  46. R Core Team (2015). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  47. Richard, A., Goldstein, S., & Dewar, R. (1989). Weed macaques: the evolutionary implications of macaque feeding ecology. International Journal of Primatology, 10(6), 569–594.CrossRefGoogle Scholar
  48. Richter, C., Taufiq, A., Hodges, K., Ostner, J., & Schülke, O. (2013). Ecology of an endemic primate species (Macaca siberu) on Siberut Island, Indonesia. SpringerPlus 2, 137,
  49. Riley, E. P., Tolbert, B., & Farida, W. R. (2013). Nutritional content explains the attractiveness of cacao to crop raiding Tonkean macaques. Current Zoology, 59, 160–169.CrossRefGoogle Scholar
  50. Robbins, M. M., & Hohmann, G. (2006). Primate feeding ecology: An integrative approach. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates (pp. 1–13). Cambridge: Cambridge University Press.Google Scholar
  51. Robinson, J. G. (1986). Seasonal variation in use of time space by wedge capuchin monkey, Cebus olivaceus: implications for foraging theory. Smithsonian Contributions to Zoology, 431, 1–60.Google Scholar
  52. Russo, S. E., Campbell, C. J., Dew, J. L., Stevenson, P. R., & Suarez, S. A. (2005). A multi-forest comparison of dietary preferences and seed dispersal by Ateles spp. International Journal of Primatology, 26(5), 1017–1037.CrossRefGoogle Scholar
  53. Saj, T., Sicotte, P., & Paterson, J. D. (1999). Influence of human food consumption on the time budget of vervets. International Journal of Primatology, 20(6), 977–994.CrossRefGoogle Scholar
  54. Sekar, N., & Sukumar, R. (2013). Waiting for Gajah: an elephant mutualist’s contingency plan for an endangered megafaunal disperser. Journal of Ecology, 101(6), 1379–1388.CrossRefGoogle Scholar
  55. Sengupta, A., & Radhakrishna, S. (2015). Fruit trait preference in rhesus macaques (Macaca mulatta) and its Implications for Seed Dispersal. International Journal of Primatology, 36(5), 999–1013.CrossRefGoogle Scholar
  56. Sengupta, A., McConkey, K. R., & Radhakrishna, S. (2014). Seed dispersal by rhesus macaques Macaca mulatta in northern India. American Journal of Primatology, 76(12), 1175–1184.CrossRefPubMedGoogle Scholar
  57. Siex, K. S., & Struhsaker, T. T. (1999). Colobus monkeys and coconuts: a study of perceived human-wildlife conflicts. Journal of Applied Ecology, 36, 1009–1020.CrossRefGoogle Scholar
  58. Sillero-Zubiri, C., & Switzer, D. (2001). Crop-raiding primates: Searching for alternative, humane ways to resolve conflict with farmers in Africa. Oxford: People and Wildlife Initiative. Wildlife Conservation Research Unit, Oxford University.Google Scholar
  59. Sivakumar, S., Varghese, J., & Prakash, V. (2006). Abundance of birds in different habitats in Buxa Tiger Reserve, West Bengal, India. Forktail, 22, 128–133.Google Scholar
  60. Srivastava, A., & Mohnot, S. (2001). Distribution, conservation status and priorities for primates in Northeast India. ENVIS Bulletin, 1, 102–108.Google Scholar
  61. Stevenson, P. R., & Link, A. (2010). Fruit preferences of Ateles belzebuth in Tinigua Park, Northwestern Amazonia. International Journal of Primatology, 31(3), 393–407.CrossRefGoogle Scholar
  62. Strier, K. (1991). Diet in one group of woolly spider monkeys, or muriquis (Brachyteles arachnoides). American Journal of Primatology, 23(2), 113–126.CrossRefGoogle Scholar
  63. Sukumar, R., Venkataraman, A., Cheeran, J. V., & Mujumdar, P. P. (2003). Study of elephants in Buxa Tiger Reserve and adjoining areas in Northern West Bengal and preparation of conservation action plan. Final Report. Bangalore: Centre for Ecological Sciences, Indian Institute of Science.Google Scholar
  64. Swedell, L., Hailemeskel, G., & Schreier, A. (2008). Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatologica, 79(6), 476–490.CrossRefGoogle Scholar
  65. Symington, M. M. (1987). Ecological and social correlates of party size in the black spider monkey, Ateles paniscus chamek, Ph.D. Dissertation, New Jersey: Princeton University.Google Scholar
  66. Tang, C., Huang, L., Huang, Z., Krzton, A., Lu, C., & Zhou, Q. (2016). Forest seasonality shapes diet of limestone-living rhesus macaques at Nonggang, China. Primates, 57(1), 83–92.CrossRefPubMedGoogle Scholar
  67. Terborgh, J. (1983). Five new world primates. Princeton: Princeton University Press.Google Scholar
  68. Tsuji, Y., Hanya, G., & Grueter, C. C. (2013). Feeding strategies of primates in temperate and alpine forests: comparison of Asian macaques and colobines. Primates, 54(3), 201–215.CrossRefPubMedGoogle Scholar
  69. van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics, 24, 353–377.CrossRefGoogle Scholar
  70. Wallace, R. B. (2005). Seasonal variations in diet and foraging behavior of Ateles chamek in a southern Amazonian tropical forest. International Journal of Primatology, 26(5), 1053–1075.CrossRefGoogle Scholar
  71. Zar, J. H. (2010). Biostatistical analysis (4th ed.). Upper Saddle River: Pearson Prentice-Hall.Google Scholar
  72. Zhou, Q., Tang, H., Wei, C., & Huang, C. (2009). Diet and seasonal changes in rhesus macaques (Macaca mulata) at Seven-star Park, Guilin. Acta Theriologica Sinica, 29, 419–426.Google Scholar
  73. Zhou, Q., Wei, H., Huang, Z., & Huang, C. (2011). Diet of the Assamese macaque Macaca assamensis in limestone habitats of Nonggang, China. Current Zoology, 57(1), 18–25.CrossRefGoogle Scholar
  74. Zhou, Q., Wei, H., Tang, H., Huang, Z., Krzton, A., & Huang, C. (2014). Niche separation of sympatric macaques, Macaca assamensis and M. mulatta, in limestone habitats of Nonggang, China. Primates, 55(1), 125–137.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Natural Sciences and EngineeringNational Institute of Advanced Studies, Indian Institute of Science CampusBangaloreIndia
  2. 2.National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations