Skip to main content

Advertisement

Log in

Fecal Bacterial Composition of Sichuan Snub-Nosed Monkeys (Rhinopithecus roxellana)

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The intestinal microbiota plays an important role in maintaining the health of its host, including human and nonhuman primates. Little is known about the intestinal bacterial composition of the Sichuan snub-nosed monkey (Rhinopithecus roxellana), which has been classified as Endangered on the International Union for Conservation of Nature Red List since 2003. We evaluated the fecal bacterial compositions of 11 Sichuan snub-nosed monkeys, including six young captive individuals (one sample from each), three adult captive individuals (four samples each), and two adult provisioned free-ranging individuals (four samples each). We also quantified fecal Bacteroides vulgatus, Bifidobacterium spp., and Lactobacillus spp., which are defined as probiotics in humans, using real-time polymerase chain reaction. We identified five major phyla in the collected samples, including Firmicutes (32.4 %), Bacteroidetes (14.7 %), Verrucomicrobia (8.8 %), Actinobacteria (4.4 %), and unclassified microbacteria (39.7 %). Fecal bacteria composition varied with age and different seasons. The fecal bacterial composition of the captive monkeys was less variable than that of provisioned free-ranging monkeys. B. vulgatus amounts were almost 100 times higher in the provisioned free-ranging monkeys (1012) than in the captive monkeys (1010). Our results provide an initial catalogue of gut microbiota in the Sichuan snub-nosed monkey, which helps to enrich our knowledge of gut microbiota in nonhuman primates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amato, K. R., Yeoman, C. J., Kent, A., Righini, N., Carbonero, F., et al. (2013). Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. The ISME Journal, 7, 1344–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473, 174–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bello González, T., van Passel, M., Tims, S., Fuentes, S., De Vos, W., et al. (2014). Application of the human intestinal tract chip to the non-human primate gut microbiota. Beneficial Microbes, 6, 271–276.

    Article  Google Scholar 

  • Biagi, E., Nylund, L., Candela, M., Ostan, R., Bucci, L., et al. (2010). Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE, 5, e10667.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bittar, F., Keita, M. B., Lagier, J. C., Peeters, M., Delaporte, E., Raoult, D. (2014). Gorilla gorilla gorilla gut: A potential reservoir of pathogenic bacteria as revealed using culturomics and molecular tools. Scientific Reports, 4.

  • Bo, X., Zunxi, H., Xiaoyan, W., Runchi, G., Xianghua, T., et al. (2010). Phylogenetic analysis of the fecal flora of the wild pygmy loris. American Journal of Primatology, 72, 699–706.

    Article  PubMed  Google Scholar 

  • Brinkley, A., & Mott, G. (1978). Anaerobic fecal bacteria of the baboon. Applied and Environmental Microbiology, 36, 530.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium, H. M. P. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486, 207–214.

    Article  Google Scholar 

  • Degnan, P. H., Pusey, A. E., Lonsdorf, E. V., Goodall, J., Wroblewski, E. E., et al. (2012). Factors associated with the diversification of the gut microbial communities within chimpanzees from Gombe National Park. Proceedings of the National Academy of Sciences of the USA, 109, 13034–13039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan, S., Louis, P., & Flint, H. (2007). Cultivable bacterial diversity from the human colon. Letters in Applied Microbiology, 44, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., et al. (2005). Diversity of the human intestinal microbial flora. Science, 308, 1635–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fite, A., Macfarlane, S., Furrie, E., Bahrami, B., Cummings, J. H., et al. (2013). Longitudinal analyses of gut mucosal microbiotas in ulcerative colitis in relation to patient age and disease severity and duration. Journal of Clinical Microbiology, 51, 849–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogel, A. T. (2015). The gut microbiome of wild lemurs: a comparison of sympatric Lemur catta and Propithecus verreauxi. Folia Primatologica, 86, 85–95.

    Article  Google Scholar 

  • Frey, J. C., Rothman, J. M., Pell, A. N., Nizeyi, J. B., Cranfield, M. R., & Angert, E. R. (2006). Fecal bacterial diversity in a wild gorilla. Applied and Environmental Microbiology, 72, 3788–3792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez, A., Petrzelkova, K., Yeoman, C. J., Vlckova, K., Mrázek, J., et al. (2015). Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Molecular Ecology, 24, 2551–2565.

    Article  CAS  PubMed  Google Scholar 

  • Good, I. J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika, 40, 237–264.

    Article  Google Scholar 

  • Guo, S. G., Li, B. G., & Watanabe, K. (2007). Diet and activity budget of Rhinopithecus roxellana in the Qinling Mountains, China. Primates, 48(4), 268–276.

    Article  PubMed  Google Scholar 

  • Kersters, K., & Vancanneyt, M. (2005). Bergey’s manual of systematic bacteriology. New York: Springer Science+Business Media.

    Google Scholar 

  • Kim, B. S., Kim, J. N., Cerniglia, C. E. (2011). In vitro culture conditions for maintaining a complex population of human gastrointestinal tract microbiota. BioMed Research International.

  • Kirkpatrick, R. C., & Grueter, C. C. (2010). Snub-nosed monkeys: multilevel societies across varied environments. Evolutionary Anthropology: Issues, News, and Reviews, 19, 98–113.

    Article  Google Scholar 

  • Leite, A., Mayo, B., Rachid, C., Peixoto, R., Silva, J., et al. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiology, 31, 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Ley, R. E., Lozupone, C. A., Hamady, M., Knight, R., & Gordon, J. I. (2008). Worlds within worlds: evolution of the vertebrate gut microbiota. Nature Reviews Microbiology, 6, 776–788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ley, R. E., Peterson, D. A., & Gordon, J. I. (2006). Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 124, 837–848.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Liang, B., Feng, Z., & Tamate, H. B. (2001). Molecular phylogenetic relationships among Sichuan snub-nosed monkeys (Rhinopithecus roxellanae) inferred from mitochondrial cytochrome-b gene sequences. Primates, 42, 153–160.

    Article  Google Scholar 

  • Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K., & Knight, R. (2012). Diversity, stability and resilience of the human gut microbiota. Nature, 489, 220–230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, M., Liu, Z., Pan, H., Zhao, L., & Li, M. (2012). Historical geographic dispersal of the golden snub-nosed monkey (Rhinopithecus roxellana) and the influence of climatic oscillations. American Journal of Primatology, 74, 91–101.

    Article  PubMed  Google Scholar 

  • Ma, C., Wu, X., Nawaz, M., Li, J., Yu, P., et al. (2011). Molecular characterization of fecal microbiota in patients with viral diarrhea. Current Microbiology, 63, 259–266.

    Article  CAS  PubMed  Google Scholar 

  • Mitsuoka, T., & Kaneuchi, C. (1977). Ecology of the bifidobacteria. The American Journal of Clinical Nutrition, 30, 1799–1810.

    CAS  PubMed  Google Scholar 

  • Moeller, A. H., Peeters, M., Ndjango, J. B., Li, Y., Hahn, B. H., & Ochman, H. (2013). Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Research, 23, 1715–1720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer, G., De Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59, 695–700.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadkarni, M. A., Martin, F. E., Jacques, N. A., & Hunter, N. (2002). Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology, 148, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, N., Amato, K. R., Garber, P., Estrada, A., Mackie, R. I., & Gaskins, H. R. (2011). Analysis of the hydrogenotrophic microbiota of wild and captive black howler monkeys (Alouatta pigra) in Palenque National Park, Mexico. American Journal of Primatology, 73, 909–919.

    Article  PubMed  Google Scholar 

  • Paul, E. A. (2014). Soil microbiology, ecology and biochemistry. San Diego: Academic.

    Google Scholar 

  • Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464, 59–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425.

    CAS  PubMed  Google Scholar 

  • Szekely, B. A., Singh, J., Marsh, T. L., Hagedorn, C., Were, S. R., & Kaur, T. (2010). Fecal bacterial diversity of human-habituated wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale Mountains National Park, Western Tanzania. American Journal of Primatology, 72, 566–574.

    PubMed  Google Scholar 

  • Tiihonen, K., Ouwehand, A. C., & Rautonen, N. (2010). Human intestinal microbiota and healthy ageing. Ageing Research Reviews, 9, 107–116.

    Article  PubMed  Google Scholar 

  • Uenishi, G., Fujita, S., Ohashi, G., Kato, A., Yamauchi, S., et al. (2007). Molecular analyses of the intestinal microbiota of chimpanzees in the wild and in captivity. American Journal of Primatology, 69, 367.

    Article  CAS  PubMed  Google Scholar 

  • Villers, L. M., Jang, S. S., Lent, C. L., Lewin-Koh, S. C., & Norosoarinaivo, J. A. (2008). Survey and comparison of major intestinal flora in captive and wild ring-tailed lemur (Lemur catta) populations. American Journal of Primatology, 70, 175–184.

    Article  PubMed  Google Scholar 

  • Wang, T., Cai, G., Qiu, Y., Fei, N., Zhang, M., et al. (2012). Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. The ISME Journal, 6, 320–329.

    Article  CAS  PubMed  Google Scholar 

  • Wu, C., Yang, F., Gao, R., Huang, Z., Xu, B., et al. (2013). Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences. African Journal of Biotechnology, 9, 6278–6289.

    Google Scholar 

  • Yap, I., & Nelson, R. (1996). WinBoot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms (pp. 1–22). Manila: International Rice Research Institute.

    Google Scholar 

  • Yildirim, S., Yeoman, C. J., Sipos, M., Torralba, M., & Wilson, B. A. (2010). Characterization of the fecal microbiome from non-human wild primates reveals species specific microbial communities. PLoS ONE, 5, e13963.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z., Su, Y., Chan, R. C., & Reimann, G. (2008). A preliminary study of food transfer in sichuan snub-nosed monkeys (Rhinopithecus roxellana). American Journal of Primatology, 70, 148–152.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities, China (Nos. GK200902030, GK201402023). The authors appreciate the great help of Dr. Joanna M. Setchell, the chief editor of International Journal of Primatology, and the reviewers for helpful suggestions and comments. The authors are also grateful to Professor Xinqing Zhao in the School of Life Science and Biotechnology, Shanghai Jiao Tong University, and Professor Jian Liang and Professor Huanjie Shao in the College of Life Sciences, Shaanxi Normal University for advice on academic writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Sun or Zhi Li.

Additional information

Handling Editor: Joanna M. Setchell

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C., Zuo, R., Liu, W. et al. Fecal Bacterial Composition of Sichuan Snub-Nosed Monkeys (Rhinopithecus roxellana). Int J Primatol 37, 518–533 (2016). https://doi.org/10.1007/s10764-016-9918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-016-9918-9

Keywords

Navigation