International Journal of Primatology

, Volume 37, Issue 2, pp 241–259 | Cite as

Assessing Stress in Zoo-Housed Western Lowland Gorillas (Gorilla gorilla gorilla) Using Allostatic Load

  • Ashley N. EdesEmail author
  • Barbara A. Wolfe
  • Douglas E. Crews


Stress contributes to the development of chronic degenerative diseases in primates. Allostatic load is an estimate of stress-induced physiological dysregulation based on an index of multiple biomarkers. It has been applied to humans to measure effects of stress and predict health outcomes. Assessing allostatic load in nonhuman primates may aid in understanding factors promoting compromised health and longevity in captive populations, as well as risk assessment among wild populations following human activities. We applied an allostatic load index to gorillas housed at the Columbus Zoo and Aquarium (N = 27, 1956–2014) using data from medical records and biomarkers from banked serum. We estimated allostatic load using seven biomarkers (albumin, cortisol, corticotropin-releasing hormone, dehydroepiandrosterone sulfate, glucose, interleukin-6, and tumor necrosis factor alpha) and then examined this index for associations with age, sex, number of stressful events, parturition, physiological health measures, and age at death. Stressful events were defined as agonistic interactions with wounding, translocations, and anesthetizations. Allostatic load positively associated with age and total number of lifetime stressful events. Allostatic load was significantly higher in females than in males. Allostatic load was not associated with number of pregnancies and was not different between nulliparous and parous females. Allostatic load associated positively with serum creatinine and triglyceride levels, showed a nonsignificant negative association with cholesterol, and did not associate significantly with age at death. These results demonstrate the potential utility of allostatic load for exploring long-term stress and health risks, as well as for evaluating environmental stressors for gorillas and other nonhuman primates in captivity and in the wild.


Allostatic load Biomarkers Captivity Gorillas Stress 



The authors thank Michelle Forman and Rebecca Makii for their assistance in recording information from keeper and medical records. This research would not have been possible without the assistance of veterinarians, keepers, and staff at the Columbus Zoo and Aquarium. We also thank two anonymous reviewers, the associate editor, and the editor-in-chief for their constructive feedback on earlier versions of this manuscript. Partial funding for this research was provided by The Ohio State University Department of Anthropology. The authors have no conflicts of interest.


  1. Akira, S., Hirano, T., Taga, T., & Kishimoto, T. (1990). Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). The FASEB Journal, 4, 2860–2867.PubMedGoogle Scholar
  2. Anestis, S. F. (2009). Urinary cortisol responses to unusual events in captive chimpanzees (Pan troglodytes). Stress, 12(1), 49–57.CrossRefPubMedGoogle Scholar
  3. Badanes, L. S., Watamura, S. E., & Hankin, B. L. (2011). Hypocortisolism as a potential marker of allostatic load in children: associations with family risk and internalizing disorders. Development and Psychopathology, 23, 881–896.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bahr, N. I., Pryce, C. R., Dobeli, M., & Martin, R. D. (1998). Evidence from urinary cortisol that maternal behavior is related to stress in gorillas. Physiology & Behavior, 64(4), 429–437.CrossRefGoogle Scholar
  5. Beckie, T. M. (2012). A systematic review of allostatic load, health, and health disparities. Biological Research for Nursing, 14(4), 311–346.CrossRefPubMedGoogle Scholar
  6. Bradley, B. J., Doran-Sheehy, D. M., Lukas, D., Boesch, C., & Vigilant, L. (2004). Dispersed male networks in western gorillas. Current Biology, 14, 510–513.CrossRefPubMedGoogle Scholar
  7. Bradley, B. J., Doran-Sheehy, D. M., & Vigilant, L. (2007). Potential for female kin associations in wild western gorillas despite female dispersal. Proceedings of the Royal Society of London B: Biological Sciences, 274, 2179–2185.CrossRefGoogle Scholar
  8. Cannon, W. B. (1932). The wisdom of the body. New York: W.W. Norton.Google Scholar
  9. Carlson, E. D., & Chamberlain, R. M. (2005). Allostatic load and health disparities: a theoretical orientation. Research in Nursing & Health, 28, 306–315.CrossRefGoogle Scholar
  10. Cavigelli, S. A., & Caruso, M. J. (2015). Sex, social status and physiological stress in primates: the importance of social and glucocorticoid dynamics. Philosophical Transactions B, 370(1669). doi: 10.1098/rstb.2014.0103.
  11. Clark, F. E., Fitzpatrick, M., Hartley, A., King, A. J., Lee, T., et al. (2012). Relationship between behavior, adrenal activity, and environment in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). Zoo Biology, 31, 306–321.CrossRefPubMedGoogle Scholar
  12. Crews, D. E. (2007). Assessing composite estimates of stress in American Samoans. American Journal of Physical Anthropology, 133(3), 1028–1034.CrossRefPubMedGoogle Scholar
  13. Crews, D. E., Harada, H., Aoyagi, K., Maeda, T., Alfarano, A., et al. (2012). Allostatic load among elderly Japanese living on Hizen-Oshima Island. International Journal of Physical Anthropology, 31, 18–29.Google Scholar
  14. Crimmins, E. M., Johnston, M., Hayward, M., & Seeman, T. E. (2003). Age differences in allostatic load: an index of physiological dysregulation. Experimental Gerontology, 38, 731–734.CrossRefPubMedGoogle Scholar
  15. Danese, A., & McEwen, B. S. (2012). Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiology & Behavior, 106, 29–39.CrossRefGoogle Scholar
  16. Dill, D. B., Adolph, E. F., & Wilber, C. G. (1964). Adaptation to the environment. Washington, DC: American Physiological Society.Google Scholar
  17. Doran, D. M., & McNeilage, A. (1998). Gorilla ecology and behavior. Evolutionary Anthropology, 6(4), 120–131.CrossRefGoogle Scholar
  18. Edes, A. N., Wolfe, B. A., & Crews, D. E. (2016). Rearing history and allostatic load in adult western lowland gorillas (Gorilla gorilla gorilla) in human care. Zoo Biology, 35(2), 167–173.Google Scholar
  19. Everly, G. S., & Lating, J. M. (2013). The anatomy and physiology of the human stress response: A clinical guide to the treatment of the human stress response (3rd ed., pp. 17–51). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  20. Fischer, K., Kettunen, J., Würtz, P., Haller, T., Havulinna, A. S., et al. (2014). Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 persons. PLoS Medicine, 11(2), 1–12.CrossRefGoogle Scholar
  21. Glei, D. A., Goldman, N., Chuang, Y.-L., & Weinstein, M. (2007). Do chronic stressors lead to physiological dysregulation? Testing the theory of allostatic load. Psychosomatic Medicine, 69, 769–776.CrossRefPubMedGoogle Scholar
  22. Glei, D. A., Goldman, N., Rodríguez, G., & Weinstein, M. (2014). Beyond self-reports: changes in biomarkers as predictors of mortality. Population and Development Review, 40(2), 331–360.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Goldstein, D. S. (2004). Merging of the homeostat theory with the concept of allostatic load. In J. Schulkin (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 99–112). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Gould, K. G. (1983). Diagnosis and treatment of infertility in male great apes. Zoo Biology, 2, 281–293.CrossRefGoogle Scholar
  25. Goymann, W., & Wingfield, J. C. (2004). Allostatic load, social status and stress hormones: the costs of social status matter. Animal Behaviour, 67, 591–602.CrossRefGoogle Scholar
  26. Harcourt, A. H. (1979a). Social relationships among adult female mountain gorillas. Animal Behaviour, 27, 251–264.CrossRefGoogle Scholar
  27. Harcourt, A. H. (1979b). Social relationships between adult male and female mountain gorillas in the wild. Animal Behaviour, 27, 325–342.CrossRefGoogle Scholar
  28. Harcourt, A. H., & Stewart, K. J. (2007). Gorilla society: Conflict, compromise, and cooperation between the sexes. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  29. Harder, J. D. (2012). Reproduction and hormones. In N. J. Silvy (Ed.), The wildlife techniques manual (Vol. 1, pp. 502–525). Baltimore: John Hopkins University Press.Google Scholar
  30. Heim, C., Ehlert, U., & Hellhammer, D. H. (2000). The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology, 25, 1–35.CrossRefPubMedGoogle Scholar
  31. Himmelfarb, J., & McMonagle, E. (2001). Albumin is the major plasma protein target of oxidant stress in uremia. Kidney International, 60, 358–363.CrossRefPubMedGoogle Scholar
  32. Hoff, M. P., Hoff, K. T., Horton, C., & Maple, T. L. (1996). Behavioral effects of changing group membership among captive lowland gorillas. Zoo Biology, 15, 383–393.CrossRefGoogle Scholar
  33. Jacobs, R. M., Ross, S. R., Wagner, K. E., Leahy, M., Meiers, S. T., & Santymire, R. M. (2014). Evaluating the physiological and behavioral response of a male and female gorilla (Gorilla gorilla gorilla) during an introduction. Zoo Biology, 33, 394–402.PubMedGoogle Scholar
  34. Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience and Biobehavioral Reviews, 35, 2–16.CrossRefPubMedGoogle Scholar
  35. Karatsoreos, I. N., & McEwen, B. S. (2011). Psychobiological allostasis: resistance, resilience and vulnerability. Trends in Cognitive Sciences, 15(12), 576–584.CrossRefPubMedGoogle Scholar
  36. Karlamangla, A. S., Singer, B. H., McEwen, B. S., Rowe, J. W., & Seeman, T. E. (2002). Allostatic load as a predictor of functional decline: MacArthur studies of successful aging. Journal of Clinical Epidemiology, 55, 696–710.CrossRefPubMedGoogle Scholar
  37. Karlamangla, A. S., Singer, B. H., & Seeman, T. E. (2006). Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosomatic Medicine, 68, 500–507.CrossRefPubMedGoogle Scholar
  38. Kusano, Y., Crews, D. E., Iwamoto, A., Sone, Y., Aoyagi, K., et al. (2016). Allostatic load differs by sex and diet, but not age in older Japanese from the Goto Islands. Annals of Human Biology, 43(1), 34–41.CrossRefPubMedGoogle Scholar
  39. Latendresse, G., & Ruiz, R. J. (2008). Bioassay research methodology: measuring CRH in pregnancy. Biological Research for Nursing, 10(1), 54–62.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leahy, R., & Crews, D. E. (2012). Physiological dysregulation and somatic decline among elders: modeling, applying and re-interpreting allostatic load. Collegium Anthropologicum, 36(1), 11–22.Google Scholar
  41. Leeds, A., Boyer, D., Ross, S. R., & Lukas, K. E. (2015). The effects of group type and young silverbacks on wounding rates in western lowland gorilla (Gorilla gorilla gorilla) groups in North American zoos. Zoo Biology, 34, 296–304.Google Scholar
  42. Less, E. H., Lukas, K. E., Kuhar, C. W., & Stoinski, T. S. (2010). Behavioral response of captive western lowland gorillas (Gorilla gorilla gorilla) to the death of silverbacks in multi-male groups. Zoo Biology, 29, 16–29.PubMedGoogle Scholar
  43. Linton, E. A., McLean, C., Nieuwenhuyzen Kruseman, A. C., Tilders, F. J., Van der Veen, E. A., & Lowry, P. J. (1987). Direct measurement of human plasma corticotropin-releasing hormone by “two-site” immunoradiometric assay. The Journal of Clinical Endocrinology & Metabolism, 64(5), 1047–1054.Google Scholar
  44. Lipowicz, A., Szklarska, A., & Malina, R. M. (2014). Allostatic load and socioeconomic status in polish adult men. Journal of Biosocial Science, 46, 155–167.CrossRefPubMedGoogle Scholar
  45. Maestripieri, D., & Hoffman, C. L. (2011). Chronic stress, allostatic load, and aging in nonhuman primates. Development and Psychopathology, 23, 1187–1195.CrossRefPubMedPubMedCentralGoogle Scholar
  46. McCann, C. M., & Rothman, J. M. (1999). Changes in nearest-neighbor associations in a captive group of western lowland gorillas after the introduction of five hand-reared infants. Zoo Biology, 18, 261–278.CrossRefGoogle Scholar
  47. McEwen, B. S. (1998a). Protective and damaging effects of stress mediators. Seminars in Medicine of the Beth Israel Deaconess Medical Center, 338(3), 171–179.Google Scholar
  48. McEwen, B. S. (1998b). Stress, adaptation, and disease: allostasis and allostatic load. Annals of the New York Academy of Sciences, 840, 33–44.CrossRefPubMedGoogle Scholar
  49. McEwen, B. S. (2003). Early life influences on life-long patterns of behavior and health. Mental Retardation and Developmental Disabilities Research Reviews, 9, 149–154.CrossRefPubMedGoogle Scholar
  50. McEwen, B. S. (2004). Protective and damaging effects of the mediators of stress and adaptation: Allostasis and allostatic load. In J. Schulkin (Ed.), Allostatis, homeostasis, and the costs of physiological adaptation (pp. 65–98). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  51. McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: central role of the brain. Physiological Reviews, 87, 873–904.CrossRefPubMedGoogle Scholar
  52. McEwen, B. S. (2008). Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology, 583, 174–185.CrossRefPubMedPubMedCentralGoogle Scholar
  53. McEwen, B. S. (2012). Brain on stress: how the social environment gets under the skin. Proceedings of the National Academy of Sciences of the United States of America, 109, 17180–17185.CrossRefPubMedPubMedCentralGoogle Scholar
  54. McEwen, B. S., & Seeman, T. E. (1999). Protective and damaging effects of mediators of stress: elaborating and testing the concepts of allostasis and allostatic load. Annals of the New York Academy of Sciences, 896, 30–47.CrossRefPubMedGoogle Scholar
  55. McEwen, B. S., & Stellar, E. (1993). Stress and the individual: mechanisms leading to disease. Archives of Internal Medicine, 153, 2093–2101.CrossRefPubMedGoogle Scholar
  56. McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–15.CrossRefPubMedGoogle Scholar
  57. Nadler, R. D., & Collins, D. C. (1984). Research on reproductive biology of gorillas. Zoo Biology, 3, 13–25.CrossRefGoogle Scholar
  58. Nadler, R. D., & Collins, D. C. (1991). Copulatory frequency, urinary pregnanediol, and fertility in great apes. American Journal of Primatology, 24, 167–179.CrossRefGoogle Scholar
  59. Nadler, R. D., Herndon, J. G., & Wallis, J. (1986). Adult sexual behavior: Hormones & reproduction. In G. Mitchell & J. M. Erwin (Eds.), Comparative primate biology: Behavior, conservation, and ecology (pp. 363–407). New York: Alan R. Liss.Google Scholar
  60. Nakamichi, M., & Kato, E. (2001). Long-term proximity relationships in a captive social group of western lowland gorillas (Gorilla gorilla gorilla). Zoo Biology, 20, 197–209.CrossRefGoogle Scholar
  61. Nakamichi, M., Onishi, K., Silldorf, A., & Sexton, P. (2014). Twelve-year proximity relationships in a captive group of western lowland gorillas (Gorilla gorilla gorilla) at the San Diego Wild Animal Park, California, USA. Zoo Biology, 33, 173–183.CrossRefPubMedGoogle Scholar
  62. Nelson, R. J. (2011). An introduction to behavioral endocrinology (4th ed.). Sunderland: Sinauer Associates.Google Scholar
  63. Raison, C. L., & Miller, A. H. (2003). When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. American Journal of Psychiatry, 160, 1554–1565.CrossRefPubMedGoogle Scholar
  64. Read, A.-L. (2006). A preliminary behavioural comparison of two captive western lowland gorilla (Gorilla gorilla gorilla) breeding groups. Paper presented at the 8th Annual Symposium on Zoo Research, Colchester Zoo.Google Scholar
  65. Robbins, M. M. (2007). Gorillas: Diversity in ecology and behavior. In C. J. Campbell, A. Fuentes, K. C. Mackinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 305–321). Oxford: Oxford University Press.Google Scholar
  66. Sapolsky, R. M. (1996). Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress, 1, 1–19.CrossRefPubMedGoogle Scholar
  67. Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57, 925–935.CrossRefPubMedGoogle Scholar
  68. Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. The Journal of Neuroscience, 10(9), 2897–2902.PubMedGoogle Scholar
  69. Scott, J., & Lockard, J. S. (2007). Competition coalitions and conflict interventions among captive female gorillas. International Journal of Primatology, 28, 761–781.CrossRefGoogle Scholar
  70. Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price of adaptation: allostatic load and its health consequences. Archives of Internal Medicine, 157, 2259–2268.CrossRefPubMedGoogle Scholar
  71. Seeman, T. E., McEwen, B. S., Rowe, J. W., & Singer, B. H. (2001). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. PNAS, 98(8), 4770–4775.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Seeman, T. E., Singer, B. H., Ryff, C. D., Love, G. D., & Levy-Storms, L. (2002). Social relationships, gender, and allostatic load across two age cohorts. Psychosomatic Medicine, 64, 395–406.CrossRefPubMedGoogle Scholar
  73. Seeman, T. E., Crimmins, E. M., Huang, M.-H., Singer, B. H., Bucur, A., et al. (2004). Cumulative biological risk and socio-economic differences in mortality: MacArthur study of successful aging. Social Science & Medicine, 58, 1985–1997.CrossRefGoogle Scholar
  74. Sicotte, P. (1993). Inter-group encounters and female transfer in mountain gorillas: influence of group composition on male behavior. American Journal of Primatology, 30, 21–26.CrossRefGoogle Scholar
  75. Sievert, J., Karesh, W. B., & Sunde, V. (1991). Reproductive intervals in captive female western lowland gorillas with a comparison to wild mountain gorillas. American Journal of Primatology, 24, 227–234.CrossRefGoogle Scholar
  76. Sterling, P. (2004). Principles of allostasis. In J. Schulkin (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 17–64). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  77. Sterling, P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106, 5–15.CrossRefGoogle Scholar
  78. Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629–649). New York: John Wiley & Sons.Google Scholar
  79. Stoinski, T. S., Hoff, M. P., & Maple, T. L. (2003). Proximity patterns of female western lowland gorillas (Gorilla gorilla gorilla) during the six months after parturition. American Journal of Primatology, 61, 61–72.CrossRefPubMedGoogle Scholar
  80. Stokes, E. J. (2004). Within-group social relationships among females and adult males in wild western lowland gorillas (Gorilla gorilla gorilla). American Journal of Primatology, 64, 233–246.CrossRefPubMedGoogle Scholar
  81. Szanton, S. L., Gill, J. M., & Allen, J. K. (2005). Allostatic load: a mechanism of socioeconomic health disparities? Biological Research for Nursing, 7(1), 7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Taylor, S. E., Klein, L. C., Lewis, B. P., Gruenewald, T. L., Gurung, R. A. R., & Updegraff, J. A. (2000). Biobehavioral responses to stress in females: tend-and-befriend, not fight-or-flight. Psychological Review, 107(3), 411–429.CrossRefPubMedGoogle Scholar
  83. Tworoger, S. S., & Hankinson, S. E. (2006). Collection, processing, and storage of biological samples in epidemiological studies: sex hormones, carotenoids, inflammatory markers, and proteomics as examples. CEBP Focus: Biorepository and Biospecimen Science, 15(9), 1578–1581.Google Scholar
  84. Ulrich-Lai, Y. M., & Herman, J. P. (2009). Neural regulation of endocrine and autonomic stress responses. Nature Reviews Neuroscience, 10, 397–409.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Watts, D. P. (1992). Social relationships of immigrant and resident female mountain gorillas. I. Male-female relationships. American Journal of Primatology, 28, 159–181.CrossRefGoogle Scholar
  86. Watts, D. P. (2003). Gorilla social relationships: A comparative overview. In A. B. Taylor & M. L. Goldsmith (Eds.), Gorilla biology: A multidisciplinary perspective (pp. 302–327). Cambridge: Cambridge University Press.Google Scholar
  87. Wingfield, J. C. (2004). Allostatic load and life cycles: Implications for neuroendocrine control mechanisms. In J. Schulkin (Ed.), Allostasis, homeostasis, and the costs of physiological adaptation (pp. 302–342). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  88. Yamagiwa, J. (1983). Diachronic changes in two eastern lowland gorilla groups (Gorilla gorilla graueri) in the Mt. Kahuzi Region Zaïre. Primates, 24(2), 174–183.CrossRefGoogle Scholar
  89. Zaragoza, F., Ibáñez, M., Mas, B., Laiglesia, S., & Anzola, B. (2011). Influence of environmental enrichment in captive chimpanzees (Pan troglodytes spp.) and gorillas (Gorilla gorilla gorilla): behavior and faecal cortisol levels. Revista Cientificia, XXI(5), 447–456.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ashley N. Edes
    • 1
    Email author
  • Barbara A. Wolfe
    • 2
    • 3
  • Douglas E. Crews
    • 1
  1. 1.Department of AnthropologyThe Ohio State UniversityColumbusUSA
  2. 2.Morris Animal FoundationDenverUSA
  3. 3.Department of Veterinary Preventive MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations