International Journal of Primatology

, Volume 37, Issue 2, pp 158–174 | Cite as

A Global-Scale Evaluation of Primate Exposure and Vulnerability to Climate Change

  • Tanya L. Graham
  • H. Damon Matthews
  • Sarah E. Turner
Article

Abstract

Human-induced climate change poses many potential threats to nonhuman primate species, many of which are already threatened by human activities such as deforestation, hunting, and the exotic pet trade. Here, we assessed the exposure and potential vulnerability of all nonhuman primate species to projected future temperature and precipitation changes. We found that overall, nonhuman primates will experience 10 % more warming than the global mean, with some primate species experiencing >1.5 °C for every °C of global warming. Precipitation changes are likely to be quite varied across primate ranges (from >7.5 % increases per °C of global warming to >7.5 % decreases). We also identified individual endangered species with existing vulnerabilities (owing to their small range areas, specialized diet, or restricted habitat use) that are expected to experience the largest climate changes. Finally, we defined hotspots of primate vulnerability to climate changes as areas with many primate species, high concentrations of endangered species, and large expected climate changes. Although all primate species will experience substantial changes from current climatic conditions, our hotspot analysis suggests that species in Central America, the Amazon, and southeastern Brazil, as well as portions of East and Southeast Asia, may be the most vulnerable to the anticipated impacts of global warming. It is essential that impacts of human-induced climate change be a priority for research and conservation planning in primatology, particularly for species that are already threatened by other human pressures. The vulnerable species and regional hotspots that we identify here represent critical priorities for conservation efforts, as existing challenges are expected to become increasingly compounded by the impacts of global warming.

Keywords

Climate change IUCN Nonhuman primates Spatial analysis Threatened species 

Supplementary material

10764_2016_9890_Fig7_ESM.gif (159 kb)
Fig. S1

Average temperature and precipitation change expected for each primate species. The dotted lines outline the boundaries of the climate change severity categories shown in Table III. Species are color-coded by genus, as given by the color bar. (GIF 159 kb)

10764_2016_9890_MOESM1_ESM.eps (455 kb)
High Resolution Image (EPS 454 kb)
10764_2016_9890_Fig8_ESM.gif (188 kb)
Fig. S2

Average (circles) and standard deviation (lines) of temperature and precipitation change for each primate genus. The dotted lines outline the boundaries of the climate change severity categories shown in Table III. Genera are color coded according to the color bar, and those genera expected to experience the largest climate changes (category 4 or higher) are also labeled on the plot. (GIF 187 kb)

10764_2016_9890_MOESM2_ESM.eps (422 kb)
High Resolution Image (EPS 421 kb)
10764_2016_9890_MOESM3_ESM.pdf (263 kb)
Fig. S3Hotspots of primate vulnerability to global warming, calculated as in Fig. 6, but using the number of genera rather than the number of species per km2. Hotspot scores are calculated (per km2) as the product of normalized measures of genera richness, average extinction risk, and climate change severity, and are classified here by quantile. Darkest pixels (upper quantiles) indicate locations of high genera richness, where primates are currently threatened by human pressures, and where large changes in temperature and/or precipitation are expected to occur. (PDF 263 kb)
10764_2016_9890_MOESM4_ESM.docx (156 kb)
Table SI(DOCX 155 kb)

References

  1. Barrett, M. A., Brown, J. L., Junge, R. E., & Yoder, A. D. (2013). Climate change, predictive modeling and lemur health: assessing impacts of changing climate on health and conservation in Madagascar. Biological Conservation, 157, 409–422.CrossRefGoogle Scholar
  2. Beehner, J. C., Onderdonk, D. A., Alberts, S. C., & Altmann, J. (2006). The ecology of conception and pregnancy failure in wild baboons. Behavioral Ecology, 17, 741–750.CrossRefGoogle Scholar
  3. Behie, A. M., Kutz, S., & Pavelka, M. (2014). Cascading effects of climate change: Do hurricane-damaged forests increase risk of exposure to parasites? Biotropica, 46, 25–31.CrossRefGoogle Scholar
  4. Chapman, C. A., Lawes, M. J., & Eeley, H. A. C. (2006). What hope for African primate diversity? African Journal of Ecology, 44, 116–133.CrossRefGoogle Scholar
  5. Chapman, C. A., Speirs, M. L., Hodder, S. A. M., & Rothman, J. M. (2010). Colobus monkey parasite infections in wet and dry habitats: implications for climate change. African Journal of Ecology, 48, 555–558.CrossRefGoogle Scholar
  6. Cheney, D. L., Seyfarth, R. M., Fischer, J., Beehner, J., Bergman, T., Johnson, S. E., Kitchen, D. M., Palombit, R. A., Rendall, D., & Silk, J. B. (2004). Factors affecting reproduction and mortality among baboons in the Okavango Delta, Botswana. International Journal of Primatology, 25, 401–428.CrossRefGoogle Scholar
  7. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., et al. (2013). Long-term climate change: Projections, commitments and irreversibility. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 1–108). Cambridge: Cambridge University Press.Google Scholar
  8. Dunbar, R. I. M. (1998). Impact of global warming on the distribution and survival of the gelada baboon: a modelling approach. Global Change Biology, 4, 293–304.CrossRefGoogle Scholar
  9. Dunham, A. E., Erhart, E. M., & Wright, P. C. (2010). Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in Southeastern Madagascar. Global Change Biology, 17, 219–227.CrossRefGoogle Scholar
  10. ESRI (Environmental Systems Research Institute). (2012). ArcMap 10.1. ArcGIS 10.1 SP1 for desktop. Redlands: Environmental Systems Research Institute.Google Scholar
  11. Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., et al. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PloS One, 8, e65427.CrossRefPubMedPubMedCentralGoogle Scholar
  12. González-Zamora, A., Arroyo-Rodríguez, V., Chaves, O. M., Sánchez-López, S., Aureli, F., & Stoner, K. E. (2011). Influence of climatic variables, forest type, and condition on activity patterns of Geoffroyi’s spider monkeys throughout Mesoamerica. American Journal of Primatology, 73, 1189–1198.CrossRefPubMedGoogle Scholar
  13. Gould, L., Sussman, R. W., & Sauther, M. L. (1999). Natural disasters and primate populations: the effects of a 2-year drought on a naturally occurring population of ring-tailed lemurs (Lemur catta) in Southwestern Madagascar. International Journal of Primatology, 20, 69–84.CrossRefGoogle Scholar
  14. Hansen, M. C., Stehman, S. V., & Potapov, P. V. (2010). Quantification of global gross forest cover loss. Proceedings of the National Academy of Sciences of the USA, 107, 8650–8655.CrossRefPubMedPubMedCentralGoogle Scholar
  15. IUCN (International Union for Conservation of Nature). (2012). IUCN red list of threatened species version 2012.1. Gland: International Union for Conservation of Nature.Google Scholar
  16. King, S. J., Arrigo-Nelson, S. J., Pochron, S. T., Semprebon, G. M., Godfrey, L. R., Wright, P. C., & Jernvall, J. (2005). Dental senescence in a long-lived primate links infant survival to rainfall. Proceedings of the National Academy of Sciences of the USA, 102, 16579–16583.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Korstjens, A. H., Lehmann, J., & Dunbar, R. I. M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79, 361–374.CrossRefGoogle Scholar
  18. Kosheleff, V. P., & Anderson, C. N. (2009). Temperature’s influence on the activity budget, terrestriality, and sun exposure of chimpanzees in the Budongo Forest, Uganda. American Journal of Physical Anthropology, 139, 172–181.CrossRefPubMedGoogle Scholar
  19. Lehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2010). Apes in a changing world: the effects of global warming on the behaviour and distribution of African apes. Journal of Biogeography, 37, 2217–2231.CrossRefGoogle Scholar
  20. Markovic, M., de Elía, R., Frigon, A., & Matthews, H. D. (2013). A transition from CMIP3 to CMIP5 for climate information providers: the case of surface temperature over Eastern North America. Climatic Change, 120, 197–210.CrossRefGoogle Scholar
  21. Meehl, G. A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J. F. B., Stouffer, R. J., & Taylor, K. E. (2007). The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bulletin of the American Meteorological Society, 88, 1383–1394.CrossRefGoogle Scholar
  22. Meyer, A. L. S., Pie, M. R., & Passos, F. C. (2014). Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. American Journal of Primatology, 76, 551–562.CrossRefPubMedGoogle Scholar
  23. Milton, K., & Giacalone, J. (2014). Differential effects of unusual climatic stress on capuchin (Cebus capucinus) and howler monkey (Alouatta palliata) populations on Barro Colorado Island, Panama. American Journal of Primatology, 76, 249–261.CrossRefPubMedGoogle Scholar
  24. Mitchell, D., Fuller, A., & Maloney, S. K. (2009). Homeothermy and primate bipedalism: is water shortage or solar radiation the main threat to baboon (Papio hamadryas) homeothermy? Journal of Human Evolution, 56, 439–446.CrossRefPubMedGoogle Scholar
  25. Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., et al. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5, 215–225.CrossRefGoogle Scholar
  26. Pavé, R., Kowalewski, M. M., Garber, P. A., Zunino, G. E., Fernandez, V. A., & Peker, S. M. (2012). Infant mortality in black-and-gold howlers (Alouatta caraya) living in a flooded forest in Northeastern Argentina. International Journal of Primatology, 33, 937–957.CrossRefGoogle Scholar
  27. Pavelka, M. S. M., Brusselers, O. T., Nowak, D., & Behie, A. M. (2003). Population reduction and social disorganization in Alouatta pigra following a hurricane. International Journal of Primatology, 24, 1037–1055.CrossRefGoogle Scholar
  28. Pavelka, M. S. M., McGoogan, K., & Steffens, T. S. (2007). Population size and characteristics of Alouatta pigra before and after a major hurricane. International Journal of Primatology, 28, 919–929.CrossRefGoogle Scholar
  29. Raghunathan, N., François, L., Huynen, M.-C., Oliveira, L. C., & Hambuckers, A. (2015). Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic Forest under a scenario of future climate change. Regional Environmental Change, 14, 683–693.CrossRefGoogle Scholar
  30. Schloss, C. A., Nuñez, T. A., & Lawler, L. (2012). Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences of the USA, 109, 8606–8611.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Scholze, M., Knorr, W., Arnell, N. W., & Prentice, I. C. (2006). A climate-change risk analysis for world ecosystems. Proceedings of the National Academy of Sciences of the USA, 103, 13116–13120.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Seto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the USA, 109, 16083–16088.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Solomon, S., Plattner, G.-K., Knutti, R., & Friedlingstein, P. (2009). Irreversible climate change due to carbon dioxide emissions. Proceedings of the National Academy of Sciences of the USA, 106, 1704–1709.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Solomon, S., Battisti, D., Doney, S., Hayhoe, K., Held, I. M., et al. (2011). Physical climate change in the 21st century. In Climate stabilization targets: emissions, concentrations and impacts over decades to millennia (pp. 105–158). Washington, DC: The National Academies Press.Google Scholar
  35. Strassburg, B. B. N., Rodrigues, A. S. L., Gusti, M., Balmford, A., Fritz, S., et al. (2012). Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nature Climate Change, 2, 350–355.CrossRefGoogle Scholar
  36. Tebaldi, C., & Arblaster, J. M. (2014). Pattern scaling: its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459–471.CrossRefGoogle Scholar
  37. Waite, T. A., Chhangani, A. K., Campbell, L. G., Rajpurohit, L. S., & Mohnot, S. A. (2007). Sanctuary in the city: urban monkeys buffered against catastrophic die-off during ENSO-related drought. EcoHealth, 4, 278–286.CrossRefGoogle Scholar
  38. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.CrossRefPubMedGoogle Scholar
  39. Wiederholt, R., & Post, E. (2010). Tropical warming and the dynamics of endangered primates. Biology Letters, 6, 257–260.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wiederholt, R., & Post, E. (2011). Birth seasonality and offspring production in threatened Neotropical primates related to climate. Global Change Biology, 17, 3035–3045.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Tanya L. Graham
    • 1
  • H. Damon Matthews
    • 1
  • Sarah E. Turner
    • 2
  1. 1.Department of Geography, Planning and EnvironmentConcordia UniversityMontrealCanada
  2. 2.Department of BiologyMcGill UniversityMontrealCanada

Personalised recommendations