International Journal of Primatology

, Volume 37, Issue 1, pp 29–46 | Cite as

Ecological and Anthropogenic Correlates of Activity Patterns in Eulemur

  • Giuseppe DonatiEmail author
  • Marco Campera
  • Michela Balestri
  • Valentina Serra
  • Marta Barresi
  • Christoph Schwitzer
  • Deborah J. Curtis
  • Luca Santini


The ultimate determinants of cathemerality, i.e., activity spread over the 24-h cycle, in primates have been linked to various ecological factors. Owing to the fast rate of habitat modification, it is imperative to know whether and how this behavioral flexibility responds to anthropogenic disturbance. The true lemurs (Eulemur clade) constitute a valuable case to study these potential effects, as all species studied so far exhibit cathemerality. Here we explored the effects of anthropogenic disturbance on activity patterns of Eulemur while controlling for ecological factors proposed as determinants of activity shifts. We first performed a meta-analysis using 13 long-term studies conducted over the last three decades on various populations of Eulemur. We fitted a beta regression using the proportion of diurnality (the activity taking place between sunrise and sunset) as the response variable and seven climatic, ecological, and anthropogenic disturbance variables at each site as predictors. We also present a validation with original data using year-round, 24-h activity of collared brown lemurs (Eulemur collaris) in forest fragments with different levels of disturbance in southeastern Madagascar. Diurnality was prevalent at most sites. Seasonality, proportions of leaves in the diet, and group size were all found to be significant predictors of the proportion of diurnal activity. After controlling for socioecological factors in the model, overall anthropogenic disturbance emerged as a negative predictor of diurnality. Our validation suggests that the lemurs in the more disturbed area exhibited more nocturnal activity than those in the less disturbed area. It is unclear whether the plasticity observed might allow populations of Eulemur to persist in disturbed areas longer than lemurs with less flexible activity patterns.


Cathemerality Ecological models Eulemur collaris Habitat disturbance Madagascar 



We thank Steig Johnson for agreeing to co-organize the Eulemur symposium at the International Primatological Society (IPS) 2014 meeting in Hanoi. We are grateful to all the participants who made the symposium successful and have contributed to this volume. We thank all authors of the studies used in the article for sharing unpublished information about their study area. The original data on E. collaris presented in this article were gathered under the collaboration agreement with the Department of Animal Biology of the University of Antananarivo. We thank the Madagascar Institute for the Conservation of Tropical Environments (MICET), the Mandena Management Committee (COGEMA), and the Ministère des Eaux et Forets for their collaboration and permission to work in Madagascar. We thank Murielle Ravaolahy for helping with the data collection on E. collaris. We acknowledge the QMM biodiversity staff, especially Jean-Baptiste Ramanamanjato, Manon Vincelette, Johny Rabenantoandro, and the field assistants at Mandena and Ste. Luce. Finally, we are grateful to Joanna Setchell, Steig Johnson, and three anonymous reviewers for their constructive comments to the manuscript. Attendance at the IPS 2014 meeting by G. Donati was assisted by a Faculty Grant from Oxford Brookes University. The field research was supported by the Rufford Foundation.


  1. Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49(3), 227–267.CrossRefPubMedGoogle Scholar
  2. Andrews, J., & Birkinshaw, C. (1998). A comparison between the daytime and night-time diet, activity and feeding height of the black lemur, Eulemur macaco (Primates: Lemuridae), in Lokobe Forest, Madagascar. Folia Primatologica, 69(5), 175–182.CrossRefGoogle Scholar
  3. Ankel-Simons, F., & Rasmussen, D. T. (2008). Diurnality, nocturnality, and the evolution of primate visual systems. American Journal of Physical Anthropology, 137(S47), 100–117.CrossRefGoogle Scholar
  4. Aschoff, J. (1966). Circadian activity pattern with two peaks. Ecology, 47(4), 657–662.CrossRefGoogle Scholar
  5. Aschoff, J., Daan, S., & Groos, G. A. (1982). Vertebrate circadian systems: Structure and physiology. Berlin: Springer.CrossRefGoogle Scholar
  6. Boinski, S., & Garber, P. A. (2000). On the move: How and why animals travel in groups. Chicago: University of Chicago Press.Google Scholar
  7. Bollen, A., & Donati, G. (2006). Conservation status of the littoral forest of south-eastern Madagascar: a review. Oryx, 40(1), 57–66.CrossRefGoogle Scholar
  8. Bollen, A., Donati, G., Fietz, J., Schwab, D., Ramanamanjato, J. B., Randrihasipara, L., van Elsacker, L., & Ganzhorn, J. (2005). An intersite comparison of fruit characteristics in Madagascar: Evidence for selection pressure through abiotic constraints rather than through co-evolution. In J. L. Dew & J. P. Boubli (Eds.), Tropical fruits and frugivores (pp. 93–119). Dordrecht: Springer.CrossRefGoogle Scholar
  9. Borgerson, C. (2015). The effects of illegal hunting and habitat on two sympatric endangered primates. International Journal of Primatology, 36(1), 74–93.CrossRefGoogle Scholar
  10. Brown, J. L., & Yoder, A. D. (2015). Shifting ranges and conservation challenges for lemurs in the face of climate change. Ecology and Evolution. doi: 10.1002/ece3.1418.Google Scholar
  11. Campera, M., Serra, V., Balestri, M., Barresi, M., Ravaolahy, M., Randriatafika, F., & Donati, G. (2014). Effects of habitat quality and seasonality on ranging patterns of collared brown lemur (Eulemur collaris) in littoral forest fragments. International Journal of Primatology, 35(5), 957–975.CrossRefGoogle Scholar
  12. Cardillo, M., Purvis, A., Sechrest, W., Gittleman, J. L., Bielby, J., & Mace, G. M. (2004). Human population density and extinction risk in the world’s carnivores. PLoS Biology, 2(7), e197. doi: 10.1371/journal.pbio.0020197.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chapman, C. A., & Chapman, L. J. (1996). Mixed-species primate groups in the Kibale Forest: ecological constraints on association. International Journal of Primatology, 17(1), 31–50.CrossRefGoogle Scholar
  14. Chivers, D. J., & Hladik, C. M. (1980). Morphology of the gastrointestinal tract in primates: comparisons with other mammals in relation to diet. Journal of Morphology, 166(3), 337–386.CrossRefPubMedGoogle Scholar
  15. CIESIN, FAO, CIAT. (2005). Gridded Population of the World, Version 3 (GPWv3): Population count grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). Accessed 1 Jan 2015.
  16. Colquhoun, I. C. (2006). Predation and cathemerality: comparing the impact of predators on the activity patterns of lemurids and ceboids. Folia Primatologica, 77(1–2), 143–165.CrossRefGoogle Scholar
  17. Crawley, M. J. (2007). The R book. Chichester: John Wiley & Sons.CrossRefGoogle Scholar
  18. Curtis, D. J. (2004). Diet and nutrition in wild mongoose lemurs (Eulemur mongoz) and their implications for the evolution of female dominance and small group size in lemurs. American Journal of Physical Anthropology, 124(3), 234–247.CrossRefPubMedGoogle Scholar
  19. Curtis, D. J. (2007). Cathemerality in lemurs. In L. Gould & M. L. Sauther (Eds.), Lemurs: Ecology and adaptations (pp. 133–157). New York: Springer.Google Scholar
  20. Curtis, D. J., & Rasmussen, M. A. (2002). Cathemerality in lemurs. Evolutionary Anthropology, 11(Supplement 1), 83–86.Google Scholar
  21. Curtis, D. J., & Rasmussen, M. A. (2006). The evolution of cathemerality in primates and other mammals: a comparative and chronoecological approach. Folia Primatologica, 77(1–2), 178–193.CrossRefGoogle Scholar
  22. Curtis, D. J., Zaramody, A., & Martin, R. D. (1999). Cathemerality in the mongoose lemur, Eulemur mongoz. American Journal of Primatology, 47(4), 279–298.CrossRefPubMedGoogle Scholar
  23. Dausmann, K. H., Glos, J., Ganzhorn, J. U., & Heldmaier, G. (2004). Physiology: hibernation in a tropical primate. Nature, 429(6994), 825–826.CrossRefPubMedGoogle Scholar
  24. Dewar, R. E., & Richard, A. F. (2007). Evolution in the hypervariable environment of Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 104(34), 13723–13727.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Di Marco, M., & Santini, L. (2015). Human pressures predict species’ geographic range size better than biological traits. Global Change Biology, 21, 2169–2178.CrossRefPubMedGoogle Scholar
  26. Diniz-Filho, J. A. F., Rodríguez, M., Bini, L. M., Olalla-Tarraga, M., Cardillo, M., Nabout, J. C., Hortal, J., & Hawkins, B. A. (2009). Climate history, human impacts and global body size of Carnivora (Mammalia: Eutheria) at multiple evolutionary scales. Journal of Biogeography, 36(12), 2222–2236.CrossRefGoogle Scholar
  27. Donati, G., & Borgognini-Tarli, S. M. (2006a). From darkness to daylight: cathemeral activity in primates. Journal of Anthropological Sciences, 84(1), 7–32.Google Scholar
  28. Donati, G., & Borgognini-Tarli, S. M. (2006b). Influence of abiotic factors on cathemeral activity: the case of Eulemur fulvus collaris in the littoral forest of Madagascar. Folia Primatologica, 77(1–2), 104–122.CrossRefGoogle Scholar
  29. Donati, G., Lunardini, A., & Kappeler, P. M. (1999). Cathemeral activity of red-fronted brown lemurs (Eulemur fulvus rufus) in the Kirindy forest/CFPF. In B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 119–137). New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  30. Donati, G., Bollen, A., Borgognini-Tarli, S. M., & Ganzhorn, J. U. (2007). Feeding over the 24-h cycle: dietary flexibility of cathemeral collared lemurs (Eulemur collaris). Behavioral Ecology and Sociobiology, 61(8), 1237–1251.CrossRefGoogle Scholar
  31. Donati, G., Baldi, N., Morelli, V., Ganzhorn, J. U., & Borgognini-Tarli, S. M. (2009). Proximate and ultimate determinants of cathemeral activity in brown lemurs. Animal Behaviour, 77(2), 317–325.CrossRefGoogle Scholar
  32. Donati, G., Kesch, K., Ndremifidy, K., Schmidt, S. L., Ramanamanjato, J. B., Borgognini-Tarli, S. M., & Ganzhorn, J. U. (2011). Better few than hungry: flexible feeding ecology of collared lemurs Eulemur collaris, in littoral forest fragments. PLoS ONE, 6(5), e19807. doi: 10.1371/journal.pone.0019807.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dunham, A. E., Erhart, E. M., & Wright, P. C. (2010). Global climate cycles and cyclones: consequences for rainfall patterns and lemur reproduction in southeastern Madagascar. Global Change Biology. doi: 10.1111/ji365-2486.2010.02205x.Google Scholar
  34. Engqvist, A., & Richard, A. (1991). Diet as a possible determinant of cathemeral activity patterns in primates. Folia Primatologica, 57(3), 169–172.CrossRefGoogle Scholar
  35. Ensing, E. P., Ciuti, S., de Wijs, F. A. L. M., Lentferink, D. H., ten Hoedt, A., Boyce, M. S., & Hut, R. A. (2014). GPS based daily activity patterns in European red deer and North American elk (Cervus elaphus): indication for a weak circadian clock in ungulates. PLoS ONE, 9(9), e106997. doi: 10.1371/journal.pone.0106997.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Erhart, E. M., & Overdorff, D. J. (2008). Population demography and social structure changes in Eulemur fulvus rufus from 1988 to 2003. American Journal of Physical Anthropology, 136(2), 183–193.CrossRefPubMedGoogle Scholar
  37. Erkert, H. G. (1989). Lighting requirements of nocturnal primates in captivity: a chronobiological approach. Zoo Biology, 8(2), 179–191.CrossRefGoogle Scholar
  38. Erkert, H. G. (2011). Chronobiological aspects of primate research. In J. M. Setchell & D. J. Curtis (Eds.), Field and laboratory methods in primatology: A practical guide (pp. 319–338). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Faurby, S., & Svenning, J.-C. (2015). Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. Diversity and Distributions, 21, 1155–1166.CrossRefGoogle Scholar
  40. Frank, L. G., & Woodroffe, R. (2001). Behaviour of carnivores in controlled and exploited populations. In J. L. Gittleman, R. K. Wayne, D. W. Macdonald, & S. M. Funk (Eds.), Carnivore conservation (pp. 35–60). Cambridge: Cambridge University Press.Google Scholar
  41. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist, 160(6), 712–726.CrossRefPubMedGoogle Scholar
  42. Ganzhorn, J. U., Wright, P., & Ratsimbazafy, J. (1999). Primate communities: Madagascar. In J. F. Fleagle, C. Janson, & K. Reed (Eds.), Primate communities (pp. 75–89). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  43. Ganzhorn, J. U., Klaus, S., Ortmann, S., & Schmid, J. (2003). Adaptation to seasonality: Some primate and non-primates examples. In P. M. Kappeler & M. E. Pereira (Eds.), Primate life histories and socioecology (pp. 132–148). Chicago: University of Chicago Press.Google Scholar
  44. Ganzhorn, J. U., Andrianasolo, T., Andrianjazalahatra, T., Donati, G., Fietz, J., Lahann, P., & Sommer, S. (2007). Lemurs in evergreen littoral forest fragments. In J. U. Ganzhorn, S. M. Goodman, & M. Vincelette (Eds.), Biodiversity, ecology, and conservation of littoral ecosystems in the region of Tolagnaro (Fort Dauphin), southeastern Madagascar (pp. 223–236). Washington, DC: Smithsonian Institution Press.Google Scholar
  45. George, S. L., & Crooks, K. R. (2006). Recreation and large mammal activity in an urban nature reserve. Biological Conservation, 133(1), 107–117.CrossRefGoogle Scholar
  46. Gerkema, M. P., & Daan, S. (1985). Ultradian rhythms in behavior: The case of the common vole (Microtus arvalis). In H. Schulz & P. Lavie (Eds.), Ultradian rhythms in physiology and behavior (pp. 11–31). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  47. Golden, C. D. (2009). Bushmeat hunting and use in the Makira Forest, north-eastern Madagascar: a conservation and livelihoods issue. Oryx, 43(3), 386–392.CrossRefGoogle Scholar
  48. Grafen, A. (1989). The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 326(1233), 119–157.CrossRefPubMedGoogle Scholar
  49. GRASS Development Team. (2010). Open source GIS. Software, Version 6.4.0. Open Source Geospatial Foundation.Google Scholar
  50. Green, G. M., & Sussman, R. W. (1990). Deforestation history of the eastern rain forests of Madagascar from satellite images. Science, 248(4952), 212–215.CrossRefPubMedGoogle Scholar
  51. Grignolio, S., Merli, E., Bongi, P., Ciuti, S., & Apollonio, M. (2011). Effects of hunting with hounds on a non-target species living on the edge of a protected area. Biological Conservation, 144(1), 641–649.CrossRefGoogle Scholar
  52. Gwinner, E. (1986). Circannual rhythms. Berlin: Springer.CrossRefGoogle Scholar
  53. Halle, S. (2006). Polyphasic activity patterns in small mammals. Folia Primatologica, 77, 15–26.CrossRefGoogle Scholar
  54. Halle, S., & Stensteth, N. C. (2000). Activity patterns in small mammals: An ecological approach. Berlin: Springer.CrossRefGoogle Scholar
  55. Irwin, M. T. (2008). Diademed sifaka (Propithecus diadema) ranging and habitat use in continuous and fragmented forest: higher density but lower viability in fragments? Biotropica, 40(2), 231–240.CrossRefGoogle Scholar
  56. Jenkins, R. K. B., Keane, A., Rakotoarivelo, A. B., Rakotomboavonjy, V., Randrianandrianina, F. H., Razafimanahaka, H. J., Ralaiarmalala, S. R., & Jones, J. P. (2011). Analysis of patterns of bushmeat consumption reveals extensive exploitation of protected species in eastern Madagascar. PLoS ONE, 6(12), e27570.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Jeppesen, J. L. (1987). Impact of human disturbance on home range, movements and activity of red deer (Cervus elaphus) in a Danish environmental. Danish Review of Game Biology, 13(1), 1–38.Google Scholar
  58. Johnson, S. E. (2007). Evolutionary divergence in the brown lemur species complex. In L. Gould & M. L. Sauther (Eds.), Lemurs: Ecology and adaptations (pp. 187–210). New York: Springer.Google Scholar
  59. Kamler, J. F., Jedrzejewska, B., & Jedrzejewski, W. (2007). Activity patterns of red deer in Bialowieza National Park, Poland. Journal of Mammalogy, 88(2), 508–514.CrossRefGoogle Scholar
  60. Kappeler, P. M. (1998). Nests, tree holes, and the evolution of primate life histories. American Journal of Primatology, 46(1), 7–33.CrossRefPubMedGoogle Scholar
  61. Kappeler, P. M., & Erkert, H. G. (2003). On the move around the clock: correlates and determinants of cathemeral activity in wild redfronted lemurs (Eulemur fulvus rufus). Behavioral Ecology and Sociobiology, 54(4), 359–369.CrossRefGoogle Scholar
  62. Kappeler, P. M., & Fichtel, C. (2015). The evolution of Eulemur social organization. International Journal of Primatology. doi: 10.1007/s10764-015-9873-x.
  63. Kilgo, J. C., Labisky, R. F., & Fritzen, D. E. (1998). Influences of hunting on the behaviour of white-tailed deer: implications for conservation of the Florida panther. Conservation Biology, 12(6), 1359–1364.CrossRefGoogle Scholar
  64. Kirk, E. C. (2006). Eye morphology in cathemeral lemurids and other mammals. Folia Primatologica, 77(1–2), 27–49.CrossRefGoogle Scholar
  65. Kitchen, A. M., Gese, E. M., & Schauster, E. R. (2000). Changes in coyote activity patterns due to reduced exposure to human persecution. Canadian Journal of Zoology, 78(5), 853–857.CrossRefGoogle Scholar
  66. Madsen, J. (1985). Impact of disturbance on field utilization of pink-footed geese in West Jutland, Denmark. Biological Conservation, 33(1), 53–63.CrossRefGoogle Scholar
  67. Madsen, J., & Fox, A. D. (1995). Impacts of hunting disturbance on waterbirds – a review. Wildlife Biology, 1(4), 193–207.Google Scholar
  68. Markolf, M., & Kappeler, P. M. (2013). Phylogeographic analysis of the true lemurs (genus Eulemur) underlines the role of river catchments for the evolution of micro-endemism in Madagascar. Frontiers in Zoology, 10(1), 70. doi: 10.1186/1742-9994-10-70.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Merritt, J. F., & Vessey, S. H. (2000). Shrews: Small insectivores with polyphasic patterns. In S. Halle & N. C. Stenseth (Eds.), Activity patterns in small mammals: An ecological approach (pp. 235–252). Berlin: Springer.CrossRefGoogle Scholar
  70. Mutschler, T. (1999). Folivory in a small-bodied lemur: The nutrition of the Alaotran gentle lemur (Hapalemur griseus alaotrensis). In B. Rakotosamimanana, H. Rasamimanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 221–239). New York: Plenum Press.CrossRefGoogle Scholar
  71. Nelson, A. (2008). Travel time to major cities: A global map of accessibility. Ispra: Global Environment Monitoring Unit – Joint Research Centre of the European Commission.Google Scholar
  72. Ossi, K., & Kamilar, J. M. (2006). Environmental and phylogenetic correlates of Eulemur behavior and ecology (Primates: Lemuridae). Behavioral Ecology and Sociobiology, 61(1), 53–64.CrossRefGoogle Scholar
  73. Overdorff, D. J., & Rasmussen, M. A. (1995). Determinants of nighttime activity in ‘diurnal’ lemurid primates. In L. G. Alterman, G. A. Doyle, & K. Izard (Eds.), Creatures of the dark: The nocturnal prosimians (pp. 61–74). New York: Plenum Press.CrossRefGoogle Scholar
  74. R Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  75. Rabenantoandro, J., Randriatafika, F., & Lowry, P. P., II. (2007). Floristic and structural characteristics of remnant littoral forest sites in the Tolagnaro area. In J. U. Ganzhorn, S. M. Goodman, & M. Vincelette (Eds.), Biodiversity, ecology and conservation of the littoral ecosystems of south-eastern Madagascar (pp. 65–77). Washington, DC: Smithsonian Institution Press.Google Scholar
  76. Rasmussen, M. A. (1999). Ecological influences on activity cycle in two cathemeral primates, Eulemur mongoz (mongoose lemur) and Eulemur fulvus fulvus (common brown lemur). Ph.D. dissertation, Duke University.Google Scholar
  77. Rowe, N., & Myers, M. (2011). All the world’s primates. Charlestown: Primate Conservation Inc.Google Scholar
  78. Santini, L., Rojas, D., & Donati, G. (2015). Evolving through day and night: origin and diversification of activity pattern in modern primates. Behavioral Ecology, 26(3), 789–796.CrossRefGoogle Scholar
  79. Schwitzer, C. (2009). Gastrointestinal morphology of the crowned lemur (Eulemur coronatus). Anatomia, Histologia, Embryologia, 38, 429–431.CrossRefPubMedGoogle Scholar
  80. Schwitzer, N., Kaumanns, W., Seitz, P. C., & Schwitzer, C. (2007a). Cathemeral activity patterns of the blue-eyed black lemur Eulemur macaco flavifrons in intact and degraded forest fragments. Endangered Species Research, 3(2), 239–247.Google Scholar
  81. Schwitzer, N., Randriatahina, G. H., Kaumanns, W., Hoffmeister, D., & Schwitzer, C. (2007b). Habitat utilization of blue-eyed black lemurs, Eulemur macaco flavifrons (Gray, 1867), in primary and altered forest fragments. Primate Conservation, 22(1), 79–87.CrossRefGoogle Scholar
  82. Schwitzer, C., Glatt, L., Nekaris, K. A. I., & Ganzhorn, J. U. (2011). Response of animals to habitat alteration: an overview focusing on primates. Endangered Species Research, 14(1), 31–38.CrossRefGoogle Scholar
  83. Schwitzer, C., Mittermeier, R. A., Johnson, S. E., Donati, G., Irwin, M., Peacock, H., Ratsimbazafy, J., Razafindramanana, J., Louis, E. E., Jr., Chikhi, L., Colquhoun, I. C., Tinsman, J., Dolch, R., LaFleur, M., Nash, S., Patel, E., Randrianambinina, B., Rasolofoharivelo, T., & Wright, P. C. (2014). Averting lemur extinctions amid Madagascar’s political crisis. Science, 343(6173), 842–843.CrossRefPubMedGoogle Scholar
  84. Shultz, R. D., & Bailey, J. A. (1978). Responses of National Park elk to human activity. Journal of Wildlife Management, 42(1), 91–100.CrossRefGoogle Scholar
  85. Sorg, J. P., & Rohner, U. (1996). Climate and tree phenology of the dry deciduous forest: the Kirindy forest. Primate Report, 46, 57–80.Google Scholar
  86. Stankowich, T. (2008). Ungulate flight responses to human disturbance: a review and meta-analysis. Biological Conservation, 141(9), 2159–2173.CrossRefGoogle Scholar
  87. Tarnaud, L. (2006). Cathemerality in the Mayotte brown lemur (Eulemur fulvus): seasonality and food quality. Folia Primatologica, 77(1–2), 166–177.CrossRefGoogle Scholar
  88. Tattersall, I. (1979). Patterns of activity in the Mayotte lemur, Lemur fulvus mayottensis. Journal of Mammalogy, 60(2), 314–323.CrossRefGoogle Scholar
  89. Tattersall, I. (1987). Cathemeral activity in primates: a definition. Folia Primatologica, 49(3–4), 200–202.CrossRefGoogle Scholar
  90. van Schaik, C. P. (1983). Why are diurnal primates living in groups? Behaviour, 87(1), 120–144.CrossRefGoogle Scholar
  91. van Schaik, C. P., & Kappeler, P. M. (1996). The social systems of gregarious lemurs: lack of convergence with anthropoids due to evolutionary disequilibrium? Ethology, 102(11), 915–941.Google Scholar
  92. Wright, P. C. (1999). Lemur traits and Madagascar ecology: coping with an island environment. Yearbook of Physical Anthropology, 42, 31–72.CrossRefGoogle Scholar
  93. Wright, P. C. (2007). Considering climate change effects in lemur ecology and conservation. In L. Gould & M. Sauther (Eds.), Lemurs: Ecology and adaptation (pp. 385–401). New York: Springer Science + Business Media.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giuseppe Donati
    • 1
    Email author
  • Marco Campera
    • 1
  • Michela Balestri
    • 1
  • Valentina Serra
    • 2
  • Marta Barresi
    • 2
  • Christoph Schwitzer
    • 3
  • Deborah J. Curtis
    • 1
  • Luca Santini
    • 4
  1. 1.Nocturnal Primate Research Group, Department of Social SciencesOxford Brookes UniversityOxfordUnited Kingdom
  2. 2.Department of BiologyUniversity of PisaPisaItaly
  3. 3.Bristol Zoo GardensBristolUK
  4. 4.Department of Biology and BiotechnologiesSapienza Università di RomaRomeItaly

Personalised recommendations