International Journal of Primatology

, Volume 37, Issue 1, pp 89–108 | Cite as

Environmental Correlates of Body Mass in True Lemurs (Eulemur spp.)

  • Adam D. GordonEmail author
  • Steig E. Johnson
  • Edward E. LouisJr.


An organism’s body size is intrinsically related to its metabolic requirements, life history profile, and ecological niche. Previous work in primates generally, and lemurs specifically, has shown that body size often correlates with ecological parameters related to temperature and energy availability in the environment, although other studies indicate the absence of any such patterns in lemurs. Here we test hypotheses that predict that body mass in Eulemur should covary with 1) overall food availability or resource seasonality and/or 2) temperature, i.e., Bergmann’s rule. We use data from 722 wild true lemurs to identify population-specific body mass for 27 populations representing 11 of the 12 described Eulemur species, and derive climatic data for each population from the WorldClim database. We use phylogenetic generalized least squares models to evaluate these hypotheses and find that body mass significantly negatively correlates with annual mean temperature and positively correlates with standard deviation of temperature, but does not significantly correlate with annual rainfall or number of dry months. These results indicate that body mass distribution across populations in Eulemur is consistent with Bergmann’s rule, but does not track resource seasonality as seen in other lemurs, e.g., Propithecus. We suggest that the fact that body mass in various lemur radiations correlates with different environmental variables may result in these patterns being obscured when such taxa are combined in a single analysis. This may help explain why some previous work has found little evidence of ecogeographical correlates with body mass across all Lemuriformes.


Bergmann’s rule Heat conservation hypothesis Madagascar Phylogenetic methods 



We are grateful to Giuseppe Donati for inviting us to contribute to this issue, and we thank him, Joanna Setchell, and three anonymous reviewers for their valuable comments on earlier versions of this manuscript. We also thank the government of Madagascar for permission to conduct the original research that was used for this analysis. We thank Omaha’s Henry Doorly Zoo and Aquarium Center for Conservation and Research, the Madagascar Biodiversity Partnership, and Madagascar Institut pour la Conservation des Écosystèmes Tropicaux (MICET) for assistance in original data collection, along with many individuals involved in original research (including Kira Delmore, Sheila Holmes, Christina Ingraldi, Annemarie Rued, and Hobinjatovo Tokiniaina). Grant sponsors for original research included the National Geographic Society (6613.99); Margot Marsh Biodiversity Fund; Conservation International; Primate Conservation, Inc.; the Natural Science and Engineering Research Council of Canada; the University of Calgary; the American Society of Primatologists; and the Ahmanson Family Foundation. A. D. Gordon also thanks the participants of the 2014 AnthroTree Workshop (supported by the National Science Foundation and the National Evolutionary Synthesis Center, NSF grants BCS-0923791 and EF-0905606) for discussions on phylogenetic comparative methods.

Supplementary material

10764_2015_9874_MOESM1_ESM.pdf (1.2 mb)
ESM 1 Supporting information regarding the maximum likelihood-based selection of consensus branch lengths for the phylogeny used in this analysis (ESM Fig. S1) and the resulting phylogram (ESM Fig. S2) are available online. (PDF 1.19 mb)


  1. Albrecht, G. H., Jenkins, P. D., & Godfrey, L. R. (1990). Ecogeographic size variation among the living and subfossil prosimians of Madagascar. American Journal of Primatology, 22, 1–50.CrossRefGoogle Scholar
  2. Altmann, J., & Alberts, S. (1987). Body mass and growth rate in a wild primate population. Oecologia, 72, 15–20.CrossRefGoogle Scholar
  3. Altmann, J., & Alberts, S. C. (2005). Growth rates in a wild primate population: ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57, 490–501.CrossRefGoogle Scholar
  4. Ashton, K. G., Tracy, M. C., & de Queiroz, A. (2000). Is Bergmann’s rule valid for mammals? The American Naturalist, 156, 390–415.CrossRefGoogle Scholar
  5. Bergmann, C. (1847). Uber die verhaltnisse der warmeokonomie der thiere zu ihrer grosse. Göttinger Studien, 595–708.Google Scholar
  6. Blackburn, T. M., & Hawkins, B. A. (2004). Bergmann's rule and the mammal fauna of northern North America. Ecography, 27, 715–724.CrossRefGoogle Scholar
  7. Blackburn, T. M., Gaston, K. J., & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5, 165–174.CrossRefGoogle Scholar
  8. Blanco, M., & Godfrey, L. (2014). Hibernation patterns of dwarf lemurs in the high altitude forest of eastern Madagascar. In N. B. Grow, S. Gursky-Doyen, & A. Krzton (Eds.), High altitude primates (pp. 23–42). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  9. Brenneman, R. A., Johnson, S. E., Bailey, C. A., Ingraldi, C., Delmore, K. E., Wyman, T. M., Andriamaharoa, H. E., Ralainasolo, F. B., Ratsimbazafy, J. H., & Louis, E. E. (2012). Population genetics and abundance of the endangered grey-headed lemur Eulemur cinereiceps in south-east Madagascar: assessing risks for fragmented and continuous populations. Oryx, 46, 298–307.CrossRefGoogle Scholar
  10. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference (2nd ed.). New York: Springer Science+Business Media.Google Scholar
  11. Delmore, K. E., Louis, E. E., & Johnson, S. E. (2011). Morphological characterization of a brown lemur hybrid zone (Eulemur rufifrons × E. cinereiceps). American Journal of Physical Anthropology, 145, 55–66.CrossRefPubMedGoogle Scholar
  12. Delmore, K. E., Brenneman, R. A., Lei, R., Bailey, C. A., Brelsford, A., Louis, E. E., & Johnson, S. E. (2013). Clinal variation in a brown lemur (Eulemur spp.) hybrid zone: combining morphological, genetic and climatic data to examine stability. Journal of Evolutionary Biology, 26, 1677–1690.CrossRefPubMedGoogle Scholar
  13. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  14. Fernandez-Duque, E. (2011). Rensch's rule, Bergmann's effect and adult sexual dimorphism in wild monogamous owl monkeys (Aotus azarai) of Argentina. American Journal of Physical Anthropology, 146, 38–48.CrossRefPubMedGoogle Scholar
  15. Gerson, J. S. (1999). Size in Eulemur fulvus rufus from western Madagascar: sexual dimorphism and ecogeographic variation. American Journal of Physical Anthropology (Supplement), 28, 134.Google Scholar
  16. Gerson, J. S. (2000). Social relationships in wild red-fronted brown lemurs (Eulemur fulvus rufus). Ph.D. dissertation, Duke University.Google Scholar
  17. Godfrey, L. R., Sutherland, M. R., Petto, A. J., & Boy, D. S. (1990). Size, space, and adaptation in some subfossil lemurs from Madagascar. American Journal of Physical Anthropology, 81, 45–66.CrossRefPubMedGoogle Scholar
  18. Gordon, A. D. (2006). Scaling of size and dimorphism in primates II: macroevolution. International Journal of Primatology, 27, 63–105.CrossRefGoogle Scholar
  19. Gordon, A. D., Johnson, S. E., & Louis, E. E., Jr. (2013). Females are the ecological sex: sex-specific body mass ecogeography in wild sifaka populations (Propithecus spp.). American Journal of Physical Anthropology, 151, 77–87.CrossRefPubMedGoogle Scholar
  20. Harcourt, A. H., & Schreier, B. M. (2009). Diversity, body mass, and latitudinal gradients in primates. International Journal of Primatology, 30, 283–300.CrossRefGoogle Scholar
  21. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  22. Ito, T., Nishimura, T., & Takai, M. (2014). Ecogeographical and phylogenetic effects on craniofacial variation in macaques. American Journal of Physical Anthropology, 154, 27–41.CrossRefPubMedGoogle Scholar
  23. IUCN (2014). IUCN Red List of Threatened Species. Version 2014.3.Google Scholar
  24. Johnson, S. E., Gordon, A. D., Stumpf, R. M., Overdorff, D. J., & Wright, P. (2005). Morphological variation in populations of Eulemur albocollaris and E. fulvus rufus. International Journal of Primatology, 26, 1399–1416.CrossRefGoogle Scholar
  25. Johnson, S. E., Lei, R., Martin, S. K., Irwin, M. T., & Louis, E. E. (2008). Does Eulemur cinereiceps exist? Preliminary evidence from genetics and ground surveys in southeastern Madagascar. American Journal of Primatology, 70, 372–385.CrossRefPubMedGoogle Scholar
  26. Kamilar, J. M., & Muldoon, K. M. (2010). The climatic niche diversity of Malagasy primates: a phylogenetic approach. PLoS ONE, 5, e11073.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kamilar, J. M., Muldoon, K. M., Lehman, S. M., & Herrera, J. P. (2012). Testing Bergmann's rule and the resource seasonality hypothesis in Malagasy primates using GIS-based climate data. American Journal of Physical Anthropology, 147, 401–408.CrossRefPubMedGoogle Scholar
  28. Kappeler, P. M. (1990). The evolution of sexual size dimorphism in prosimian primates. American Journal of Primatology, 21, 201–214.CrossRefGoogle Scholar
  29. Kappeler, P. M. (1991). Patterns of sexual dimorphism in body weight among prosimian primates. Folia Primatologica, 57, 132–146.CrossRefGoogle Scholar
  30. Lahann, P., Schmid, J., & Ganzhorn, J. U. (2006). Geographic variation in populations of Microcebus murinus in Madagascar: resource seasonality or Bergmann's rule? International Journal of Primatology, 27, 983–999.CrossRefGoogle Scholar
  31. Lehman, S. M. (2007). Ecological and phylogenetic correlates to body size in the Indriidae. International Journal of Primatology, 28, 183–210.CrossRefGoogle Scholar
  32. Lehman, S. M., Mayor, M., & Wright, P. C. (2005). Ecogeographic size variations in sifakas: a test of the resource seasonality and resource quality hypotheses. American Journal of Physical Anthropology, 126, 318–328.CrossRefPubMedGoogle Scholar
  33. Leigh, S. R., & Shea, B. T. (1996). Ontogeny of body size variation in African apes. American Journal of Physical Anthropology, 99, 43–65.CrossRefPubMedGoogle Scholar
  34. Leigh, S. R., & Terranova, C. J. (1998). Comparative perspectives on bimaturism, ontogeny, and dimorphism in lemurid primates. International Journal of Primatology, 19, 723–749.CrossRefGoogle Scholar
  35. Lindstedt, S. L., & Boyce, M. S. (1985). Seasonality, fasting endurance, and body size in mammals. The American Naturalist, 125, 873–878.CrossRefGoogle Scholar
  36. Markolf, M., & Kappeler, P. M. (2013). Phylogeographic analysis of the true lemurs (genus Eulemur) underlines the role of river catchments for the evolution of micro-endemism in Madagascar. Frontiers in Zoology, 10, 70.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Martins, E. P., & Hansen, T. F. (1997). Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. The American Naturalist, 149, 646–667. Erratum 153:448.CrossRefGoogle Scholar
  38. Mayr, E. (1956). Geographical character gradients and climatic adaptation. Evolution, 10, 105–108.CrossRefGoogle Scholar
  39. McNab, B. K. (2010). Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecologia, 164, 13–23.CrossRefPubMedGoogle Scholar
  40. Meiri, S., Yom-Yov, Y., & Geffen, E. (2007). What determines conformity to Bergmann’s rule? Global Ecology and Biogeography, 16, 788–794.CrossRefGoogle Scholar
  41. Mittermeier, R. A., Ganzhorn, J. U., Konstant, W. R., Glander, K., Tattersall, I., Groves, C. P., Rylands, A. B., Hapke, A., Ratsimbazafy, J., Mayor, M. I., Louis, E. E., Jr., Rumpler, Y., Schwitzer, C., & Rasoloarison, R. M. (2008). Lemur diversity in Madagascar. International Journal of Primatology, 29, 1607–1656.CrossRefGoogle Scholar
  42. Muldoon, K. M., & Simons, E. L. (2007). Ecogeographic size variation in small-bodied subfossil primates from Ankilitelo, southwestern Madagascar. American Journal of Physical Anthropology, 134, 152–161.CrossRefPubMedGoogle Scholar
  43. Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., & Pearse, W. (2012). Caper: Comparative analyses of phylogenetics and evolution in R. R package version 0.5.Google Scholar
  44. Overdorff, D. J., & Johnson, S. E. (2004). Eulemur, true lemur. In S. M. Goodman & J. Benstead (Eds.), The natural history of Madagascar (pp. 1320–1324). Chicago: University of Chicago Press.Google Scholar
  45. Pagel, M. (1997). Inferring evolutionary processes from phylogenies. Zoologica Scripta, 26, 331–348.CrossRefGoogle Scholar
  46. Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.CrossRefPubMedGoogle Scholar
  47. R Development Core Team. (2014). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  48. Ravosa, M. J. (1998). Cranial allometry and geographic variation in slow lorises (Nycticebus). American Journal of Primatology, 45, 225–243.CrossRefPubMedGoogle Scholar
  49. Ravosa, M. J., Meyers, D. M., & Glander, K. E. (1993). Relative growth of the limbs and trunk in sifakas: heterochronic, ecological, and functional considerations. American Journal of Physical Anthropology, 92, 499–520.CrossRefPubMedGoogle Scholar
  50. Scholander, P. F. (1955). Evolution of climatic adaptation in homeotherms. Evolution, 9, 15–26.CrossRefGoogle Scholar
  51. Smith, R. J., & Cheverud, J. M. (2002). Scaling of sexual dimorphism in body mass: a phylogenetic analysis of Rensch's rule in primates. International Journal of Primatology, 23, 1095–1135.CrossRefGoogle Scholar
  52. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.CrossRefPubMedGoogle Scholar
  53. Steudel, K., Porter, W. P., & Sher, D. (1994). The biophysics of Bergmann's rule: a comparison of the effects of pelage and body size variation on metabolic rate. Canadian Journal of Zoology, 72, 70–77.CrossRefGoogle Scholar
  54. Symonds, M. E., & Moussalli, A. (2011). A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behavioral Ecology and Sociobiology, 65, 13–21.CrossRefGoogle Scholar
  55. Terborgh, J., & van Schaik, C. P. (1987). Convergence vs. non-convergence in primate communities. In J. H. R. Gee & P. S. Giller (Eds.), Organization of communities, past and present (pp. 205–226). Oxford: Blackwell.Google Scholar
  56. Tokiniaina, H., Bailey, C., Shore, G., Delmore, K., Johnson, S., Louis, E., & Brenneman, R. (2009). Characterization of 18 microsatellite marker loci in the white-collared lemur (Eulemur cinereiceps). Conservation Genetics, 10, 1459–1462.CrossRefGoogle Scholar
  57. Zehr, S. M., Roach, R. G., Haring, D., Taylor, J., Cameron, F. H., & Yoder, A. D. (2014). Life history profiles for 27 strepsirrhine primate taxa generated using captive data from the Duke Lemur Center. Scientific Data, 1, 140019.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Adam D. Gordon
    • 1
    Email author
  • Steig E. Johnson
    • 2
  • Edward E. LouisJr.
    • 3
  1. 1.Department of AnthropologyUniversity at Albany – SUNYAlbanyUSA
  2. 2.Department of Anthropology and ArchaeologyUniversity of CalgaryCalgaryCanada
  3. 3.Center for Conservation and ResearchOmaha’s Henry Doorly Zoo and AquariumOmahaUSA

Personalised recommendations