International Journal of Primatology

, Volume 36, Issue 5, pp 1036–1054 | Cite as

Feeding Postures of Cao Vit Gibbons (Nomascus nasutus) Living in a Low-Canopy Karst Forest

  • Hanlan Fei
  • Changyong Ma
  • Thad Q. Bartlett
  • Ran Dai
  • Wen Xiao
  • Pengfei Fan


Food acquisition is an important factor in the evolution of primate postural behavior. Gibbons are well known for their ability to exploit terminal branches by means of below branch suspensory feeding, but few studies of gibbon positional behavior have been conducted since the seminal work of the 1970s and 1980s. We studied the feeding posture of three cao vit gibbon groups living in degraded karst forest in Bangliang Gibbon Nature Reserve between August 2008 and December 2009 to determine if body mass, age, and food type affect feeding posture. We found that cao vit gibbons spent most of their time feeding from branches (59.4 %) and twigs (33.2 %) in the middle canopy of the forest (5–10 m). They used suspensory hanging and sitting as their main feeding postures. Large-bodied gibbons spent more time on larger supports than smaller juveniles when feeding on nonfig fruit and leaves. In addition, gibbons of all age–sex classes adopted a suspensory posture more often when using smaller (twigs) or more flexible (lianas) supports. We found little evidence of age–sex differences in the frequency of suspensory feeding. The subtle differences we did detect suggest that intragroup feeding competition or ontogeny may confound the body size effects on feeding posture. Overall our findings conform to the view that within species positional behavior is largely constrained by musculoskeletal anatomy and not by habitat quality because cao vit gibbons showed a similar pattern of canopy and substrate use to gibbons occupying less disturbed forests.


Age–sex categories Body mass Cao vit gibbon Feeding postures Suspensory 



This study was supported by the National Youth Outstanding Talent Support Program of China, Conservation Leadership Program (CLP), Fauna and Flora International (FFI), and International Foundation for Science (IFS). Idea Wild provided equipment for this research. All research methods adhered to the Chinese legal requirements. Many thanks are given to Mrs. Yan Lu from FFI China and Mr. Paul Insua-Cao from FFI Vietnam for their kind help. We thank Mr. Tan Wujin, Huang Tao, Huang Tianzhu, Lin Yucong, Yang Xiao, Yao Zhongming, Nong Qunce, Chen Guoyu, Liang Yaojie, and Zhou Jingpei from the Jingxi Forestry Bureau for their needed support. Dr. Paul A. Garber, Dr. Joanna Setchell, and three reviewers provided invaluable comments to improve the original manuscript.


  1. Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49, 227–267.CrossRefPubMedGoogle Scholar
  2. Andrews, P., & Groves, C. P. (1976). Gibbons and brachiation. In D. M. Rumbaugh (Ed.), Gibbon and siamang (Vol. 4, pp. 167–218). Basel: Karger.Google Scholar
  3. Bartlett, T. Q. (2011). The Hylobatidae: Small apes of Asia. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, R. M. Stumpf, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 300–312). New York: Oxford University Press.Google Scholar
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society B: Statistical Methodology, 57, 289–300.Google Scholar
  5. Bezanson, M. (2009). Life history and locomotion in Cebus capucinus and Alouatta palliata. American Journal of Physical Anthropology, 140, 508–517.Google Scholar
  6. Bitty, E. A., & McGraw, W. S. (2007). Locomotion and habitat use of Stampflii’s putty-nosed monkey (Cercopithecus nictitans stampflii) in the Tai National Park, Ivory Coast. American Journal of Physical Anthropology, 134, 383–391.CrossRefPubMedGoogle Scholar
  7. Cannon, C. H., & Leighton, M. (1994). Comparative locomotor ecology of gibbons and macaques: Selection of canopy elements for crossing gaps. American Journal of Physical Anthropology, 93, 504–524.CrossRefGoogle Scholar
  8. Cant, J. G. H. (1987). Effects of sexual dimorphism in body size of feeding postural behavior of Sumatran orangutans (Pongo pygmaeus). American Journal of Physical Anthropology, 74, 143–148.CrossRefGoogle Scholar
  9. Cant, J. G. H. (1992). Positional behavior and body size of arboreal primates: A theoretical framework for field studies and an illustration of its application. American Journal of Physical Anthropology, 88, 273–283.CrossRefPubMedGoogle Scholar
  10. Cheyne, S. M., Chivers, D. J., & Sugardjito, J. (2008). Biology and behavior of reintroduced gibbons. Biodiversity Conservation, 17, 1741–1751.CrossRefGoogle Scholar
  11. Chivers, D. J. (1974). The siamang in Malaya: A field study of a primate in tropical rain forest (Contributions to Primatology, Vol. 4). Basel: Karger.Google Scholar
  12. Clutton-Brock, T. H., Albon, S. D., & Guinness, F. E. (1989). Fitness costs of gestation and lactation in wild mammals. Nature, 337, 260–262.CrossRefPubMedGoogle Scholar
  13. Dagosto, M. (1994). Testing positional behavior of Malagasy lemurs: A randomization approach. American Journal of Physical Anthropology, 94, 189–202.CrossRefPubMedGoogle Scholar
  14. Dagosto, M., & Yamashita, N. (1998). Effect of habitat structure on positional behavior and support use in three species of lemur. Primates, 39, 459–472.Google Scholar
  15. Das, J., Biswas, J., Bhattacherjee, P. C., & Rao, S. S. (2009). Canopy bridges: An effective conservation tactic for supporting gibbon populations in forest fragments. In S. Lappan & D. J. Whittaker (Eds.), The gibbons: New perspectives on small ape socioecology and population biology (pp. 467–476). New York: Springer Science + Business Media.CrossRefGoogle Scholar
  16. Doran, D. M. (1997). Ontogeny of locomotion in mountain gorillas and chimpanzees. Journal of Human Evolution, 32, 323–344.CrossRefPubMedGoogle Scholar
  17. Dunham, N. T. (2015). Ontogeny of positional behavior and support use among Colobus angolensis palliatus of the Diani Forest, Kenya. Primates, 56, 183–192.CrossRefPubMedGoogle Scholar
  18. Dunham, N. T., & McGraw, W. S. (2014). Positional behavior and habitat use of Peters’ Angola black and white colobus monkey (Colobus angolensis palliatus) in structurally distinct area of the Diani Forest, Kenya. African Primates, 9, 1–14.Google Scholar
  19. Fan, P. F., Jiang, X. L., & Tian, C. C. (2009). The critically endangered black crested gibbon Nomascus concolor on Wuliang Mountain, Yunnan: The function of different forest types for the gibbon’s conservation. Oryx, 43, 203–208.CrossRefGoogle Scholar
  20. Fan, P. F., Fei, H. L., Xiang, Z. F., Zhang, W., Ma, C. Y., & Huang, T. (2010). Social structure and group dynamics of the Cao Vit gibbon (Nomascus nasutus) in Bangliang, Jingxi, China. Folia Primatologica, 81, 245–253.CrossRefGoogle Scholar
  21. Fan, P. F., Fei, H. L., Scott, M. B., Zhang, W., & Ma, C. Y. (2011). Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: Implications for conservation. Biological Conservation, 144, 2247–2254.CrossRefGoogle Scholar
  22. Fan, P. F., Fei, H. L., & Ma, C. Y. (2012). Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi, China. American Journal of Primatology, 74, 632–641.CrossRefPubMedGoogle Scholar
  23. Fan, P. F., Scott, M. B., Fei, H. L., & Ma, C. Y. (2013a). Locomotion behavior of cao vit gibbon (Nomascus nasutus) living in karst forest in Bangliang Nature Reserve, Guangxi, China. Integrative Zoology, 8, 356–364.CrossRefPubMedGoogle Scholar
  24. Fan, P. F., Ren, G. P., Wang, W., Scott, M. B., Ma, C. Y., Fei, H. L., Wang, L., Xiao, W., & Zhu, J. G. (2013b). Habitat evaluation and population viability analysis of the last population of cao vit gibbon (Nomascus nasutus): Implications for conservation. Biological Conservation, 161, 39–47.CrossRefGoogle Scholar
  25. Fan, P. F., Bartlett, T. Q., Fei, H. L., Ma, C. Y., & Zhang, W. (2015). Understanding stable bi-female grouping in gibbons: Feeding competition and reproductive success. Frontiers in Zoology, 12, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Fei, H. L., Scott, M. B., Zhang, W., Ma, C. Y., Xiang, Z. F., & Fan, P. F. (2012). Sleeping tree selection of cao vit gibbon (Nomascus nasutus) living in degraded karst forest in Bangliang, Jingxi, China. American Journal of Primatology, 74, 998–1005.Google Scholar
  27. Fleagle, J. G. (1976). Locomotion and posture of the Malayan siamang and implications for hominoid evolution. Folia Primatologica, 26, 245–269.CrossRefGoogle Scholar
  28. Fleagle, J. G., & Mittermeier, R. A. (1980). Locomotor behavior, body size, and comparative ecology of seven Suriname monkeys. American Journal of Physical Anthropology, 52, 301–314.CrossRefGoogle Scholar
  29. Garber, P. A. (2011). Primate locomotor positional behavior and ecology. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, S. K. Bearder, & R. M. Stumpf (Eds.), Primates in perspective (2nd ed., pp. 548–563). New York: Oxford University Press.Google Scholar
  30. Garber, P. A., & Pruetz, J. D. (1995). Positional behavior in moustached tamarin monkeys: Effects of habitat on locomotor variability and locomotor stability. Journal of Human Evolution, 28, 411–426.CrossRefGoogle Scholar
  31. Gebo, D. L., & Chapman, C. A. (1995). Positional behavior in five sympatric old world monkeys. American Journal of Physical Anthropology, 97, 49–76.Google Scholar
  32. Gittins, S. P. (1983). Use of the forest canopy by agile gibbon. Folia Primatologica, 40, 134–144.CrossRefGoogle Scholar
  33. Grand, T. I. (1972). A mechanical interpretation of terminal branch feeding. Journal of Mammalogy, 53, 198–201.CrossRefGoogle Scholar
  34. Grueter, C. C., Li, D. Y., Ren, B. P., & Li, M. (2013). Substrate use and postural behavior in free-ranging snub-nosed monkeys (Rhinopithecus bieti) in Yunnan. Integrative Zoology, 8, 335–345.CrossRefPubMedGoogle Scholar
  35. Hasan, M. K., Feeroz, M. M., Islam, M. A., Kabir, M. M., & Begum, S. (2007). Substrate use by the western hoolock gibbon (Hoolock hoolock) in a semievergreen forest of bangladesh. Zoos’s Print Journal, 22, 2702–2705.CrossRefGoogle Scholar
  36. Houle, A., Chapman, C. A., & Vickery, W. L. (2007). Intratree variation in fruit production and implications for primate foraging. International Journal of Primatology, 28, 1197–1217.CrossRefGoogle Scholar
  37. Huang, C. M., & Li, Y. B. (2005). How does the white-headed langur (Trachypithecus leucocephalus) adapt locomotor behavior to its unique limestone hill habitat? Primates, 46, 261–267.CrossRefPubMedGoogle Scholar
  38. Hunt, K. D. (1992). Social rank and body size as determinants of positional behavior in Pan troglodytes. Primates, 33, 347–357.CrossRefGoogle Scholar
  39. Hunt, K. D., Cant, J. G. H., Gebo, D. L., Rose, M. D., Walker, S. E., & Youlatos, D. (1996). Standardized descriptions of primate locomotor and postural modes. Primates, 37(4), 363–387.CrossRefGoogle Scholar
  40. IUCN. (2013) 2013 IUCN Red List of Threatened Species. (Accessed on December 25, 2013).
  41. Iurck, M. F., Nowak, M. G., Costa, L. C. M., Mendes, S. L., Ford, S. M., & Strier, K. B. (2013). Feeding and resting postures of wild northern muriquis (Brachyteles hypoxanthus). American Journal of Primatology, 75, 74–87.CrossRefPubMedGoogle Scholar
  42. Le, T. D., Fan, P. F., Yan, L., Le, H. O., & Josh, K. (2008). The global cao vit gibbon (Nomascus nasutus) population. Fauna & Flora International, Vietnam Programme and China Programme. Unpublished report.Google Scholar
  43. Ma, S. L., & Wang, Y. X. (1986). The taxonomy and distribution of the gibbons in southern China and its adjacent region-with description of three new subspecies. Zoological Research, 7, 393–410.Google Scholar
  44. Manduell, K. L., Harrison, M. E., & Thorpe, S. K. S. (2012). Forest structure and support availability influence orangutan locomotion in Sumatra and Borneo. American Journal of Primatology, 74, 1128–1142.CrossRefPubMedGoogle Scholar
  45. McConkey, K. R. (1999). Gibbons as seed dispersers in the rain forests of central Borneo. Ph.D. Dissertation, University of Cambridge, UK.Google Scholar
  46. McGraw, W. S. (1996). Cercopithecid locomotion, support use, and support availability in the Tai forest, Ivory Coast. American Journal of Physical Anthropology, 100, 507–522.Google Scholar
  47. McGraw, W. S. (1998). Posture and support use of old world monkeys (Cercopithecidae): The influence of foraging strategies, activity patterns, and the spatial distribution of preferred food items. American Journal of Primatology, 46, 229–250.CrossRefPubMedGoogle Scholar
  48. McGraw, W. S. (2000). Positional behavior of Cercopithecus petaurista. International Journal of Primatology, 21, 157–182.CrossRefGoogle Scholar
  49. Mittermeier, R. A., & Fleagle, J. G. (1976). The locomotor and postural repertoires of Ateles geoffroyi and Colobus guereza, and a reevaluation of the locomotor category semibrachiation. American Journal of Physical Anthropology, 45(2), 235–255.CrossRefGoogle Scholar
  50. Mittermeier, R. A., Rylands, A. B., Wilson, D. E., & Martinez-Vilalta, A. (2013). Handbook of the mammals of the world: Primates. Barcelona: Lynx Edicions.Google Scholar
  51. Myatt, J. R., & Thorpe, S. K. S. (2011). Postural strategies employed by orangutans (Pongo abelii) during feeding in the terminal branch niche. American Journal of Physical Anthropology, 146, 73–82.CrossRefPubMedGoogle Scholar
  52. Peres, C. A. (1992). Prey-capture benefits in a mixed-species group of Amazonian Tamarins, Saguinus fucicollis and S. mystax. Behavoral Ecology and Sociobiology, 31, 339–347.Google Scholar
  53. Remis, M. (1995). Effects of body-size and social-context on the arboreal activities of lowland gorillas in the Central African Republic. American Journal of Physical Anthropology, 97, 413–433.CrossRefPubMedGoogle Scholar
  54. Richard, A. (1985). Primates in nature. New York: W. H. Freeman.Google Scholar
  55. Rose, M. D. (1974). Postural adaptations in new and old world monkeys. In F. A. Jenkins (Ed.), Primate locomotion (pp. 201–222). New York: Academic Press.Google Scholar
  56. Srikosamatara, S. (1984). Ecology of plieated gibbons in south-east Thailand. In H. Preuschoft, D. J. Chivers, W. Y. Brockelman, & N. Creel (Eds.), The lesser apes (pp. 242–257). Edinburgh: Edinburgh University Press.Google Scholar
  57. Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23, 209–223.CrossRefGoogle Scholar
  58. Sussman, R. W., Rasmussen, D. T., & Raven, P. H. (2013). Rethinking primate origins again. American Journal of Primatology, 128, 371–380.Google Scholar
  59. Terborgh, J. (1983). Five new world primates: A study in comparative ecology. Princeton, NJ: Princeton University Press.Google Scholar
  60. Thorpe, S. K. S., & Crompton, R. H. (2009). Orangutan positional behavior: interspecific variation and ecological correlates. In S. A. Wich, S. S. U. Atomoko, T. M. Setia, & C. P. van Schaik (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 33–47). New York: Oxford University Press.Google Scholar
  61. Workman, C., Covert, H. H. (2005). Learning the ropes: the ontogeny of locomotion in red-shanked douc (Pygathrix nemaeus), Delacour’s (Trachypithecus delacouri), and Hatinh langurs (Trachypithecus hatinhensis) I. positional behavior. American Journal of Physical Anthropology, 128, 371–380. Google Scholar
  62. Workman, C., & Schmitt, D. (2012). Positional behavior of Delacour’s langurs (Trachypithecus delacouri) in northern Vietnam. International Journal of Primatology, 33, 19–37.CrossRefGoogle Scholar
  63. Youlatos, D. (2002). Positional behavior of black spider monkeys (Ateles paniscus) in French Guiana. International Journal of Primatology, 23, 1071–1093.CrossRefGoogle Scholar
  64. Zhou, Q. H., Luo, B., Wei, F. W., & Huang, C. M. (2013). Habitat use and locomotion of the François’ langur (Trachypithecus francoisi) in limestone habitats of Nonggang, China. Integrative Zoology, 8, 346–355.CrossRefPubMedGoogle Scholar
  65. Zhu, W. W., Garber, P. A., Bezanson, M., Qi, X. G., & Li, B. G. (2015). Age- and sex-based patterns of positional behavior and substrate utilization in the golden snub-nosed monkey (Rhinopithecus roxellana). American Journal of Primatology. doi: 10.1002/ajp.22314.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institute of Eastern–Himalaya Biodiversity ResearchDali UniversityDaliPR China
  2. 2.Department of AnthropologyThe University of Texas at San AntonioSan AntonioUSA

Personalised recommendations