Skip to main content

Advertisement

Log in

Mating Competition, Promiscuity, and Life History Traits as Predictors of Sexually Transmitted Disease Risk in Primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Competition among males influences the distribution of copulations and should therefore influence the spread of sexually transmitted diseases (STDs). We developed a model to investigate STDs in the mating and social systems found in primates, and we tested predictions using comparative methods. In the model, groups were distributed on a square lattice in which males or females disperse and males undergo characteristic dominance trajectories at maturity (challenge vs. queuing). We investigated the impact of mating rate, mating skew, migration rate of males or females, and group size on disease spread and prevalence. The model generated several predictions: 1) STD prevalence is higher in females than males; 2) STD risk increases with copulation rate; 3) high skew is negatively associated with STD risk; 4) STD risk is higher for all individuals when females disperse and 5) when mortality rates are lower; and 6) reproductive skew and later age of male dominance (queuing) produce more strongly female-biased STD prevalence. In comparative tests, we quantified STD risk as prevalence and richness of sexually transmitted organisms at the host species level. We found positive associations between host longevity and higher STD richness, and only (nonsignificant) weak trends for females to have higher STD prevalence. Mating skew showed a weakly positive association with STD richness, contrary to predictions of our model but consistent with predictions from a previous model. In some tests, we also found that female dispersal resulted in greater STD infection risk. Collectively, these results demonstrate that mating competition and demography influence patterns of STD infection, with mortality rates having the strongest effects in comparative tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A., Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M., & Pulliam, J. R. C. (2003). Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annual Review of Ecology, Evolution and Systematics, 34, 517–547.

    Article  Google Scholar 

  • Anderson, M. J., Hessel, J. K., & Dixson, A. F. (2004). Primate mating systems and the evolution of immune response. Journal of Reproductive Immunology, 61, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press.

    Google Scholar 

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Article  Google Scholar 

  • Ashby, B., & Gupta, S. (2013). Sexually transmitted infections in polygamous mating systems. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120048.

  • Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.

    Article  PubMed  Google Scholar 

  • Blower, S. M., & Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission—an HIV model, as an example. International Statistical Review, 62, 229–243.

    Article  Google Scholar 

  • Boily, M.-C., Baggaley, R. F., Wang, L., Masse, B., White, R. G., Hayes, R. J., & Alary, M. (2009). Heterosexual risk of HIV-1 infection per sexual act: Systematic review and meta-analysis of observational studies. The Lancet Infectious Diseases, 9, 118–129.

    Article  PubMed  Google Scholar 

  • Cooper, N., & Nunn, C. L. (2013). Identifying future zoonotic disease threats: Where are the gaps in our understanding of primate infectious diseases? Evolution, Medicine, and Public Health, 1, 27–36.

    Article  Google Scholar 

  • Corbet, G. B., & Hill, J. E. (1991). A world list of mammalian species. Oxford: Oxford University Press.

    Google Scholar 

  • Dixson, A. F., & Anderson, M. J. (2004). Sexual behavior, reproductive physiology and sperm competition in male mammals. Physiology & Behavior, 83, 361–371.

    Article  CAS  Google Scholar 

  • Ezenwa, V. O., Price, S. A., Altizer, S., Vitone, N. D. & Cook. K. C. (2006). Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos, 115, 526–536.

  • Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.

    Article  CAS  PubMed  Google Scholar 

  • Garland, T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.

    Article  PubMed  Google Scholar 

  • Gramacy, R. B. (2007). tgp: An R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. Journal of Statistical Software, 19, 6.

    Google Scholar 

  • Gramacy, R. B., & Taddy, M. (2012). Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models. Journal of Statistical Software, 33, 1–48.

    Google Scholar 

  • Hahn, B. H., Shaw, G. M., De Cock, K. M., & Sharp, P. M. (2000). AIDS as a zoonosis: Scientific and public health implications. Science, 287, 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Harcourt, A. H., Purvis, A., & Liles, L. (1995). Sperm competition: Mating system, not breeding season, affects testes size of primates. Functional Ecology, 9, 468–476.

    Article  Google Scholar 

  • Harper, K. N., Fyumagwa, R. D., Hoare, R., Wambura, P. N., Coppenhaver, D. H., Sapolsky, R. M., Alberts, S. C., Tung, J., Rogers, J., & Kilewo, M. (2012). Treponema pallidum infection in the wild baboons of East Africa: Distribution and genetic characterization of the strains responsible. PLoS ONE, 7, e50882.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hart, B. J., Korinek, E., & Brennan, P. (1987). Postcopulatory genital grooming in male rats: prevention of sexually transmitted infections. Physiology and Behavior, 41, 321–325.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Keele, B., Jones, J., Terio, K., Estes, J., Rudicell, R., Wilson, M., Li, Y., Learn, G., Beasley, T., & Schumacher-Stankey, J. (2009). Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature, 460, 515–519.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kloster, B. E., Manias, D. A., Ostrow, R. S., Shaver, M. K., McPherson, S. W., Rangen, S., Uno, H., & Faras, A. J. (1988). Molecular cloning and characterization of the DNA of two papillomaviruses from monkeys. Virology, 166, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Knauf, S., Batamuzi, E., Mlengeya, T., Kilewo, M., Lejora, I., Nordhoff, M., Ehlers, B., Harper, K., Fyumagwa, R., & Hoare, R. (2011). Treponema infection associated with genital ulceration in wild baboons. Veterinary Pathology, 2, 292–303.

  • Knauf, S., Liu, H., & Harper, K. N. (2013). Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerging Infectious Diseases, 19, 2058–2060.

  • Kokko, H., & Lindstrom J. (1997). Measuring the mating skew. American Naturalist, 794–799.

  • Kokko, H., Ranta, E., Ruxton, G., & Lundberg, P. (2002). Sexually transmitted disease and the evolution of mating systems. Evolution, 56, 1091–1100.

    Article  PubMed  Google Scholar 

  • Kutsukake, N., & Nunn, C. L. (2006). Comparative tests of reproductive skew in male primates: The roles of female mating behavior and incomplete control. Behavioral Ecology and Sociobiology, 60, 695–707.

    Article  Google Scholar 

  • Lindenfors, P., Nunn, C. L., Jones, K. E., Cunningham, A. A., Sechrest, W., & Gittleman, J. L. (2007). Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 16, 496–509.

  • Lindenfors, P., Revell, L. J., & Nunn, C. L. (2010). Sexual dimorphism in primate aerobic capacity: A phylogenetic test. Journal of Evolutionary Biology, 23, 1183–1194.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lockhart, A. B., Thrall, P. H., & Antonovics, J. (1996). Sexually transmitted diseases in animals: Ecological and evolutionary implications. Biological Reviews of the Cambridge Philosophical Society, 71, 415–471.

    Article  CAS  PubMed  Google Scholar 

  • Madkan, V. K., Giancola, A. A., Sra, K. K., & Tyring, S. K. (2006). Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases. Archives of Dermatology, 142, 365.

    Article  PubMed  Google Scholar 

  • Martins, E. P., & Garland, T. (1991). Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution, 45, 534–557.

    Article  Google Scholar 

  • Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527–558.

    Article  PubMed  Google Scholar 

  • Nunn, C. L. (2002). A comparative study of leukocyte counts and disease risk in primates. Evolution, 56, 177–190.

    Article  PubMed  Google Scholar 

  • Nunn, C. L. (2003). Behavioral defences against sexually transmitted diseases in primates. Animal Behaviour, 66, 37–48.

    Article  Google Scholar 

  • Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Nunn, C. L. (2012). Primate disease ecology in comparative and theoretical perspective. American Journal of Primatology, 74, 497–509.

    Article  PubMed  Google Scholar 

  • Nunn, C. L., & Altizer, S. (2004). Sexual selection, behaviour and sexually transmitted diseases. In P. M. Kappeler & C. P. van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 117–130). Cambridge, U.K.: Cambridge University Press.

    Chapter  Google Scholar 

  • Nunn, C. L., & Altizer, S. (2005). The Global Mammal Parasite Database: An online resource for infectious disease records in wild primates. Evolutionary Anthroplogy, 14, 1–2.

    Article  Google Scholar 

  • Nunn, C. L., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Nunn, C. L., Altizer, S., Jones, K. E., & Sechrest, W. (2003). Comparative tests of parasite species richness in primates. American Naturalist, 162, 597–614.

    Article  PubMed  Google Scholar 

  • Nunn, C. L., Gittleman, J. L., & Antonovics, J. (2000). Promiscuity and the primate immune system. Science, 290, 1168–1170.

    Article  CAS  PubMed  Google Scholar 

  • Nunn, C. L., Thrall, P. H., Stewart, K., & Harcourt, A. H. (2008). Emerging infectious diseases and animal social systems. Evolutionary Ecology, 22, 519–543.

  • Nunn, C. L., Thrall, P. H., Bartz, K., Dasgupta, T., & Boesch, C. (2009). Do transmission mechanisms or social systems drive cultural dynamics in socially structured populations? Animal Behaviour, 77, 1515–1524.

    Article  Google Scholar 

  • Nunn, C. L., & van Schaik, C. P. (2002). Reconstructing the behavioral ecology of extinct primates. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. v. Schaik (Eds.), Reconstructing behavior in the fossil record (pp. 159–216). New York: Kluwer Academic/Plenum Press.

  • O'Banion, M. K., Sundberg, J. P., Shima, A. L., & Reichmann, M. E. (1987). Venereal papilloma and papillomavirus in a colobus monkey (Colobus guereza). Intervirology, 28, 232–237.

    Article  PubMed  Google Scholar 

  • Ostner, J., Nunn, C., & Schülke, O. (2008). Female reproductive synchrony predicts skewed paternity across primates. Behavioral Ecology, 19, 1150.

    Article  PubMed Central  PubMed  Google Scholar 

  • Padian, N. S., Shiboski, S. C., Glass, S. O., & Vittinghoff, E. (1997). Heterosexual transmission of human immunodeficiency virus (HIV) in Northern California: Results from a ten-year study. American Journal of Epidemiology, 146, 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Pagel, M., & Lutzoni, F. (2002). Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In M. Lässig & A. Valleriani (Eds.), Biological evolution and statistical physics (pp. 148–161). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Pagel, M., & Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. American Naturalist, 167, 808–825.

    Article  PubMed  Google Scholar 

  • Pujol, G., Iooss, B., Janon, A., & Iooss, M. B. (2014). Sensitivity: sensitivity analysis. R package version 1.8-2. http://CRAN.R-project.org/package=sensitivity

  • R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing.

    Google Scholar 

  • Revell, L. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1, 319–329.

  • Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223

  • Roberts, M. L., Buchanan, K. L., & Evans, M. R. (2004). Testing the immunocompetence handicap hypothesis: A review of the evidence. Animal Behaviour, 68, 227–239.

    Article  Google Scholar 

  • Ross, C., & Jones, K. E. (1999). Socioecology and the evolution of primate reproductive rates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 73–110). Cambridge, U.K.: Cambridge University Press.

    Chapter  Google Scholar 

  • Rushton, S. P., Lurz, P. W. W., Gurnell, J., & Fuller, R. (2000). Modelling the spatial dynamics of parapoxvirus disease in red and grey squirrels: A possible cause of the decline in the red squirrel in the UK? Journal of Applied Ecology, 37, 997–1012.

    Article  Google Scholar 

  • Seaholm, S. K., Ackerman, E., & Wu, S. C. (1988). Latin hypercube sampling and the sensitivity Analysis of a Monte-Carlo epidemic model. International Journal of Bio-Medical Computing, 23, 97–112.

    Article  CAS  PubMed  Google Scholar 

  • Thrall, P. H., Antonovics, J., & Bever, J. D. (1997). Sexual transmission of disease and host mating systems: Within-season reproductive success. American Naturalist, 149, 485–506.

    Article  Google Scholar 

  • Thrall, P. H., Antonovics, J., & Dobson, A. P. (2000). Sexually transmitted diseases in polygynous mating systems: Prevalence and impact on reproductive success. Proceedings of the Royal Society of London B: Biological Sciences, 267, 1555–1563.

    Article  CAS  Google Scholar 

  • Thrall, P. H., Antonovics, J., & Wilson, W. G. (1998). Allocation to sexual versus nonsexual disease transmission. American Naturalist, 151, 29–45.

    Article  CAS  PubMed  Google Scholar 

  • van Noordwijk, M. A., & van Schaik, C. P. (2004). Sexual selection and the careers of primate males: Paternity concentration, dominance-acquisition tactics and transfer decisions. In P. M. Kappeler & C. P. v. Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 208–229). Cambridge, U.K: Cambridge University Press.

  • van Schaik, C. P., van Noordwijk, M. A., & Nunn, C. L. (1999). Sex and social evolution in primates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 204–240). Cambridge, U.K.: Cambridge University Press.

    Chapter  Google Scholar 

  • Wlasiuk, G., & Nachman, M. (2010). Promiscuity and the rate of molecular evolution at primate immunity genes. Evolution, 64, 2204–2220.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We especially thank Randi Griffin for coding the model and providing extensive feedback on the design, implementation, and interpretation of the findings. We thank two reviewers and the editors of this special issue for their feedback. Joel Bray helped compile data used for the comparative tests and provided feedback on the text. For funding, N. Kutsukake thanks PRESTO (JST) and Kakenhi (25711025, MEXT), and E. J. Scully acknowledges support from an National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Nunn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effects of sex-biased dispersal and female group size (n f ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 223 kb)

Fig. S2

Effects of sex-biased dispersal and peak age of dominance (p) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 225 kb)

Fig. S3

Effects of sex-biased dispersal and migration rate (m r ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 214 kb)

Fig. S4

Effects of sex-biased dispersal and migration rate (c r ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 222 kb)

Fig. S5

Effects of sex-biased dispersal and mortality rate (d) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 216 kb)

IJOP_D-13-00138R2_ESM_Main_data.xlsx (XLSX 21 kb)

IJOP-D-13-00138R2_ESM_TreeBlock_10kTrees_Primates_Version3.nex-1.txt (TXT 74 kb)

IJOP-D-13-00138R2_ESM_STD_Model_Code.R (R 8 kb)

IJOP-D-13-00138R2_ESM_Eq_Prev.docx (DOCX 1307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunn, C.L., Scully, E.J., Kutsukake, N. et al. Mating Competition, Promiscuity, and Life History Traits as Predictors of Sexually Transmitted Disease Risk in Primates. Int J Primatol 35, 764–786 (2014). https://doi.org/10.1007/s10764-014-9781-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-014-9781-5

Keywords

Navigation