International Journal of Primatology

, Volume 35, Issue 3–4, pp 764–786 | Cite as

Mating Competition, Promiscuity, and Life History Traits as Predictors of Sexually Transmitted Disease Risk in Primates

  • Charles L. NunnEmail author
  • Erik J. Scully
  • Nobuyuki Kutsukake
  • Julia Ostner
  • Oliver Schülke
  • Peter H. Thrall


Competition among males influences the distribution of copulations and should therefore influence the spread of sexually transmitted diseases (STDs). We developed a model to investigate STDs in the mating and social systems found in primates, and we tested predictions using comparative methods. In the model, groups were distributed on a square lattice in which males or females disperse and males undergo characteristic dominance trajectories at maturity (challenge vs. queuing). We investigated the impact of mating rate, mating skew, migration rate of males or females, and group size on disease spread and prevalence. The model generated several predictions: 1) STD prevalence is higher in females than males; 2) STD risk increases with copulation rate; 3) high skew is negatively associated with STD risk; 4) STD risk is higher for all individuals when females disperse and 5) when mortality rates are lower; and 6) reproductive skew and later age of male dominance (queuing) produce more strongly female-biased STD prevalence. In comparative tests, we quantified STD risk as prevalence and richness of sexually transmitted organisms at the host species level. We found positive associations between host longevity and higher STD richness, and only (nonsignificant) weak trends for females to have higher STD prevalence. Mating skew showed a weakly positive association with STD richness, contrary to predictions of our model but consistent with predictions from a previous model. In some tests, we also found that female dispersal resulted in greater STD infection risk. Collectively, these results demonstrate that mating competition and demography influence patterns of STD infection, with mortality rates having the strongest effects in comparative tests.


Comparative study Infectious disease Male mating competition Sexual selection Sexually transmitted disease 



We especially thank Randi Griffin for coding the model and providing extensive feedback on the design, implementation, and interpretation of the findings. We thank two reviewers and the editors of this special issue for their feedback. Joel Bray helped compile data used for the comparative tests and provided feedback on the text. For funding, N. Kutsukake thanks PRESTO (JST) and Kakenhi (25711025, MEXT), and E. J. Scully acknowledges support from an National Science Foundation Graduate Research Fellowship.

Supplementary material

10764_2014_9781_MOESM1_ESM.pptx (223 kb)
Fig. S1 Effects of sex-biased dispersal and female group size (n f ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 223 kb)
10764_2014_9781_MOESM2_ESM.pptx (225 kb)
Fig. S2 Effects of sex-biased dispersal and peak age of dominance (p) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 225 kb)
10764_2014_9781_MOESM3_ESM.pptx (214 kb)
Fig. S3 Effects of sex-biased dispersal and migration rate (m r ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 214 kb)
10764_2014_9781_MOESM4_ESM.pptx (222 kb)
Fig. S4 Effects of sex-biased dispersal and migration rate (c r ) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 222 kb)
10764_2014_9781_MOESM5_ESM.pptx (217 kb)
Fig. S5 Effects of sex-biased dispersal and mortality rate (d) on (a) population prevalence and (b) sex differences in prevalence (calculated as female prevalence minus male prevalence). Filled circles indicate male dispersal. Open circles indicate female dispersal. (PPTX 216 kb)
10764_2014_9781_MOESM6_ESM.xlsx (21 kb)
IJOP_D-13-00138R2_ESM_Main_data.xlsx (XLSX 21 kb)
10764_2014_9781_MOESM7_ESM.txt (75 kb)
IJOP-D-13-00138R2_ESM_TreeBlock_10kTrees_Primates_Version3.nex-1.txt (TXT 74 kb)
10764_2014_9781_MOESM8_ESM.r (9 kb)
IJOP-D-13-00138R2_ESM_STD_Model_Code.R (R 8 kb)
10764_2014_9781_MOESM9_ESM.docx (1.3 mb)
IJOP-D-13-00138R2_ESM_Eq_Prev.docx (DOCX 1307 kb)


  1. Altizer, S., Nunn, C. L., Thrall, P. H., Gittleman, J. L., Antonovics, J., Cunningham, A. A., Dobson, A. P., Ezenwa, V., Pedersen, A. B., Poss, M., & Pulliam, J. R. C. (2003). Social organization and parasite risk in mammals: Integrating theory and empirical studies. Annual Review of Ecology, Evolution and Systematics, 34, 517–547.CrossRefGoogle Scholar
  2. Anderson, M. J., Hessel, J. K., & Dixson, A. F. (2004). Primate mating systems and the evolution of immune response. Journal of Reproductive Immunology, 61, 31–38.PubMedCrossRefGoogle Scholar
  3. Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: Dynamics and control. Oxford: Oxford University Press.Google Scholar
  4. Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.CrossRefGoogle Scholar
  5. Ashby, B., & Gupta, S. (2013). Sexually transmitted infections in polygamous mating systems. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120048.Google Scholar
  6. Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717–745.PubMedCrossRefGoogle Scholar
  7. Blower, S. M., & Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission—an HIV model, as an example. International Statistical Review, 62, 229–243.CrossRefGoogle Scholar
  8. Boily, M.-C., Baggaley, R. F., Wang, L., Masse, B., White, R. G., Hayes, R. J., & Alary, M. (2009). Heterosexual risk of HIV-1 infection per sexual act: Systematic review and meta-analysis of observational studies. The Lancet Infectious Diseases, 9, 118–129.PubMedCrossRefGoogle Scholar
  9. Cooper, N., & Nunn, C. L. (2013). Identifying future zoonotic disease threats: Where are the gaps in our understanding of primate infectious diseases? Evolution, Medicine, and Public Health, 1, 27–36.CrossRefGoogle Scholar
  10. Corbet, G. B., & Hill, J. E. (1991). A world list of mammalian species. Oxford: Oxford University Press.Google Scholar
  11. Dixson, A. F., & Anderson, M. J. (2004). Sexual behavior, reproductive physiology and sperm competition in male mammals. Physiology & Behavior, 83, 361–371.CrossRefGoogle Scholar
  12. Ezenwa, V. O., Price, S. A., Altizer, S., Vitone, N. D. & Cook. K. C. (2006). Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos, 115, 526–536.Google Scholar
  13. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  14. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. American Naturalist, 160, 712–726.PubMedCrossRefGoogle Scholar
  15. Garland, T., Bennett, A. F., & Rezende, E. L. (2005). Phylogenetic approaches in comparative physiology. Journal of Experimental Biology, 208, 3015–3035.PubMedCrossRefGoogle Scholar
  16. Gramacy, R. B. (2007). tgp: An R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. Journal of Statistical Software, 19, 6.Google Scholar
  17. Gramacy, R. B., & Taddy, M. (2012). Categorical inputs, sensitivity analysis, optimization and importance tempering with tgp version 2, an R package for treed Gaussian process models. Journal of Statistical Software, 33, 1–48.Google Scholar
  18. Hahn, B. H., Shaw, G. M., De Cock, K. M., & Sharp, P. M. (2000). AIDS as a zoonosis: Scientific and public health implications. Science, 287, 607–614.PubMedCrossRefGoogle Scholar
  19. Harcourt, A. H., Purvis, A., & Liles, L. (1995). Sperm competition: Mating system, not breeding season, affects testes size of primates. Functional Ecology, 9, 468–476.CrossRefGoogle Scholar
  20. Harper, K. N., Fyumagwa, R. D., Hoare, R., Wambura, P. N., Coppenhaver, D. H., Sapolsky, R. M., Alberts, S. C., Tung, J., Rogers, J., & Kilewo, M. (2012). Treponema pallidum infection in the wild baboons of East Africa: Distribution and genetic characterization of the strains responsible. PLoS ONE, 7, e50882.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hart, B. J., Korinek, E., & Brennan, P. (1987). Postcopulatory genital grooming in male rats: prevention of sexually transmitted infections. Physiology and Behavior, 41, 321–325.PubMedCrossRefGoogle Scholar
  22. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.Google Scholar
  23. Keele, B., Jones, J., Terio, K., Estes, J., Rudicell, R., Wilson, M., Li, Y., Learn, G., Beasley, T., & Schumacher-Stankey, J. (2009). Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. Nature, 460, 515–519.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kloster, B. E., Manias, D. A., Ostrow, R. S., Shaver, M. K., McPherson, S. W., Rangen, S., Uno, H., & Faras, A. J. (1988). Molecular cloning and characterization of the DNA of two papillomaviruses from monkeys. Virology, 166, 30–40.PubMedCrossRefGoogle Scholar
  25. Knauf, S., Batamuzi, E., Mlengeya, T., Kilewo, M., Lejora, I., Nordhoff, M., Ehlers, B., Harper, K., Fyumagwa, R., & Hoare, R. (2011). Treponema infection associated with genital ulceration in wild baboons. Veterinary Pathology, 2, 292–303.Google Scholar
  26. Knauf, S., Liu, H., & Harper, K. N. (2013). Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerging Infectious Diseases, 19, 2058–2060.Google Scholar
  27. Kokko, H., & Lindstrom J. (1997). Measuring the mating skew. American Naturalist, 794–799.Google Scholar
  28. Kokko, H., Ranta, E., Ruxton, G., & Lundberg, P. (2002). Sexually transmitted disease and the evolution of mating systems. Evolution, 56, 1091–1100.PubMedCrossRefGoogle Scholar
  29. Kutsukake, N., & Nunn, C. L. (2006). Comparative tests of reproductive skew in male primates: The roles of female mating behavior and incomplete control. Behavioral Ecology and Sociobiology, 60, 695–707.CrossRefGoogle Scholar
  30. Lindenfors, P., Nunn, C. L., Jones, K. E., Cunningham, A. A., Sechrest, W., & Gittleman, J. L. (2007). Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 16, 496–509.Google Scholar
  31. Lindenfors, P., Revell, L. J., & Nunn, C. L. (2010). Sexual dimorphism in primate aerobic capacity: A phylogenetic test. Journal of Evolutionary Biology, 23, 1183–1194.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Lockhart, A. B., Thrall, P. H., & Antonovics, J. (1996). Sexually transmitted diseases in animals: Ecological and evolutionary implications. Biological Reviews of the Cambridge Philosophical Society, 71, 415–471.PubMedCrossRefGoogle Scholar
  33. Madkan, V. K., Giancola, A. A., Sra, K. K., & Tyring, S. K. (2006). Sex differences in the transmission, prevention, and disease manifestations of sexually transmitted diseases. Archives of Dermatology, 142, 365.PubMedCrossRefGoogle Scholar
  34. Martins, E. P., & Garland, T. (1991). Phylogenetic analyses of the correlated evolution of continuous characters: A simulation study. Evolution, 45, 534–557.CrossRefGoogle Scholar
  35. Muehlenbein, M. P., & Bribiescas, R. G. (2005). Testosterone-mediated immune functions and male life histories. American Journal of Human Biology, 17, 527–558.PubMedCrossRefGoogle Scholar
  36. Nunn, C. L. (2002). A comparative study of leukocyte counts and disease risk in primates. Evolution, 56, 177–190.PubMedCrossRefGoogle Scholar
  37. Nunn, C. L. (2003). Behavioral defences against sexually transmitted diseases in primates. Animal Behaviour, 66, 37–48.CrossRefGoogle Scholar
  38. Nunn, C. L. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  39. Nunn, C. L. (2012). Primate disease ecology in comparative and theoretical perspective. American Journal of Primatology, 74, 497–509.PubMedCrossRefGoogle Scholar
  40. Nunn, C. L., & Altizer, S. (2004). Sexual selection, behaviour and sexually transmitted diseases. In P. M. Kappeler & C. P. van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 117–130). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  41. Nunn, C. L., & Altizer, S. (2005). The Global Mammal Parasite Database: An online resource for infectious disease records in wild primates. Evolutionary Anthroplogy, 14, 1–2.CrossRefGoogle Scholar
  42. Nunn, C. L., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press.Google Scholar
  43. Nunn, C. L., Altizer, S., Jones, K. E., & Sechrest, W. (2003). Comparative tests of parasite species richness in primates. American Naturalist, 162, 597–614.PubMedCrossRefGoogle Scholar
  44. Nunn, C. L., Gittleman, J. L., & Antonovics, J. (2000). Promiscuity and the primate immune system. Science, 290, 1168–1170.PubMedCrossRefGoogle Scholar
  45. Nunn, C. L., Thrall, P. H., Stewart, K., & Harcourt, A. H. (2008). Emerging infectious diseases and animal social systems. Evolutionary Ecology, 22, 519–543.Google Scholar
  46. Nunn, C. L., Thrall, P. H., Bartz, K., Dasgupta, T., & Boesch, C. (2009). Do transmission mechanisms or social systems drive cultural dynamics in socially structured populations? Animal Behaviour, 77, 1515–1524.CrossRefGoogle Scholar
  47. Nunn, C. L., & van Schaik, C. P. (2002). Reconstructing the behavioral ecology of extinct primates. In J. M. Plavcan, R. F. Kay, W. L. Jungers, & C. P. v. Schaik (Eds.), Reconstructing behavior in the fossil record (pp. 159–216). New York: Kluwer Academic/Plenum Press.Google Scholar
  48. O'Banion, M. K., Sundberg, J. P., Shima, A. L., & Reichmann, M. E. (1987). Venereal papilloma and papillomavirus in a colobus monkey (Colobus guereza). Intervirology, 28, 232–237.PubMedCrossRefGoogle Scholar
  49. Ostner, J., Nunn, C., & Schülke, O. (2008). Female reproductive synchrony predicts skewed paternity across primates. Behavioral Ecology, 19, 1150.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Padian, N. S., Shiboski, S. C., Glass, S. O., & Vittinghoff, E. (1997). Heterosexual transmission of human immunodeficiency virus (HIV) in Northern California: Results from a ten-year study. American Journal of Epidemiology, 146, 350–357.PubMedCrossRefGoogle Scholar
  51. Pagel, M., & Lutzoni, F. (2002). Accounting for phylogenetic uncertainty in comparative studies of evolution and adaptation. In M. Lässig & A. Valleriani (Eds.), Biological evolution and statistical physics (pp. 148–161). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  52. Pagel, M., & Meade, A. (2006). Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo. American Naturalist, 167, 808–825.PubMedCrossRefGoogle Scholar
  53. Pujol, G., Iooss, B., Janon, A., & Iooss, M. B. (2014). Sensitivity: sensitivity analysis. R package version 1.8-2.
  54. R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: Foundation for Statistical Computing.Google Scholar
  55. Revell, L. (2010). Phylogenetic signal and linear regression on species data. Methods in Ecology and Evolution, 1, 319–329.Google Scholar
  56. Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution, 3, 217–223Google Scholar
  57. Roberts, M. L., Buchanan, K. L., & Evans, M. R. (2004). Testing the immunocompetence handicap hypothesis: A review of the evidence. Animal Behaviour, 68, 227–239.CrossRefGoogle Scholar
  58. Ross, C., & Jones, K. E. (1999). Socioecology and the evolution of primate reproductive rates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 73–110). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  59. Rushton, S. P., Lurz, P. W. W., Gurnell, J., & Fuller, R. (2000). Modelling the spatial dynamics of parapoxvirus disease in red and grey squirrels: A possible cause of the decline in the red squirrel in the UK? Journal of Applied Ecology, 37, 997–1012.CrossRefGoogle Scholar
  60. Seaholm, S. K., Ackerman, E., & Wu, S. C. (1988). Latin hypercube sampling and the sensitivity Analysis of a Monte-Carlo epidemic model. International Journal of Bio-Medical Computing, 23, 97–112.PubMedCrossRefGoogle Scholar
  61. Thrall, P. H., Antonovics, J., & Bever, J. D. (1997). Sexual transmission of disease and host mating systems: Within-season reproductive success. American Naturalist, 149, 485–506.CrossRefGoogle Scholar
  62. Thrall, P. H., Antonovics, J., & Dobson, A. P. (2000). Sexually transmitted diseases in polygynous mating systems: Prevalence and impact on reproductive success. Proceedings of the Royal Society of London B: Biological Sciences, 267, 1555–1563.CrossRefGoogle Scholar
  63. Thrall, P. H., Antonovics, J., & Wilson, W. G. (1998). Allocation to sexual versus nonsexual disease transmission. American Naturalist, 151, 29–45.PubMedCrossRefGoogle Scholar
  64. van Noordwijk, M. A., & van Schaik, C. P. (2004). Sexual selection and the careers of primate males: Paternity concentration, dominance-acquisition tactics and transfer decisions. In P. M. Kappeler & C. P. v. Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 208–229). Cambridge, U.K: Cambridge University Press.Google Scholar
  65. van Schaik, C. P., van Noordwijk, M. A., & Nunn, C. L. (1999). Sex and social evolution in primates. In P. C. Lee (Ed.), Comparative primate socioecology (pp. 204–240). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  66. Wlasiuk, G., & Nachman, M. (2010). Promiscuity and the rate of molecular evolution at primate immunity genes. Evolution, 64, 2204–2220.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Charles L. Nunn
    • 1
    • 2
    • 3
    Email author
  • Erik J. Scully
    • 1
  • Nobuyuki Kutsukake
    • 4
    • 5
  • Julia Ostner
    • 6
  • Oliver Schülke
    • 6
  • Peter H. Thrall
    • 7
  1. 1.Department of Human Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Department of Evolutionary AnthropologyDuke UniversityDurhamUSA
  3. 3.Duke Global Health InstituteDurhamUSA
  4. 4.Department of Evolutionary Studies of BiosystemsThe Graduate University for Advanced StudiesHayama-choJapan
  5. 5.PRESTO Researcher, Japan Science and Technology AgencyKawaguchiJapan
  6. 6.Courant Research Centre Evolution of Social BehaviourGeorg-August University GöttingenGöttingenGermany
  7. 7.CSIRO Plant IndustryCanberraAustralia

Personalised recommendations