Skip to main content
Log in

Feasibility and Uncertainty in Behavior Genetics for the Nonhuman Primate

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The analysis of phenotypic covariances among genetically related individuals is the basis for estimations of genetic and phenotypic effects on phenotypes. Beyond heritability, there are several other estimates that can be made with behavior genetic models of interest to primatologists. Some of these estimates are feasible with primate samples because they take advantage of the types of relatives available to compare in primate species and because most behaviors are expressed orders of magnitude more often and in a greater variety of contexts than morphological or life-history traits. The hypotheses that can be tested with these estimates are contrasted with hypotheses that will be difficult to achieve in primates because of sample size limitations. Feasible comparisons include the proportion of variance from interaction effects, the variation of genetic effects across environments, and the genetics of growth and development. Simulation shows that uncertainty of genetic parameters can be reduced by sampling each individual more than once. Because sample sizes are likely to remain relatively small in most primate behavior genetics, expressing uncertainty in parameter estimates is needed to move our inferences forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams, M. J., King, J. E., & Weiss, A. (2012). The majority of genetic variation in orangutan personality and subjective well-being is nonadditive. Behavior Genetics, 42, 675–686.

    Article  PubMed  Google Scholar 

  • Bell, A. M., Hankison, S. J., & Laskowski, K. L. (2009). The repeatability of behaviour: A meta-analysis. Animal Behaviour, 77(4), 771–783.

    Article  Google Scholar 

  • Bijma, P. (2010). Estimating indirect genetic effects: Precision of estimates and optimum designs. Genetics, 186(3), 1013–1028.

    Article  PubMed  Google Scholar 

  • Brent, L. J. N., Heilbronner, S. R., Horvath, J. E., Gonzalez-Martinez, J., Ruiz-Lambides, A., Robinson, A. G., et al. (2013). Genetic origins of social networks in rhesus macaques. Scientific Reports, 3. doi:10.1038/srep01042.

  • Briley, D. A., & Tucker-Drob, E. M. (2013). Explaining the increasing veritability of cognitive ability across development: A meta-analysis of longitudinal twin and adoption studies. Psychological Science. doi:10.1177/0956797613478618.

    PubMed  Google Scholar 

  • Bush, W. S., & Moore, J. H. (2012). Genome-wide association studies. PLoS Computational Biology, 8(12), e1002822. doi:10.1371/journal.pcbi.1002822.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cavigelli, S. A., & Pereira, M. E. (2000). Mating season aggression and fecal testosterone levels in male ring-tailed lemurs (Lemur catta). Hormones and Behavior, 37(3), 246–255.

    Article  CAS  PubMed  Google Scholar 

  • Charney, E. (2012). Behavior genetics and postgenomics. Behavioral and Brain Sciences, 35(05), 331–358.

    Article  PubMed  Google Scholar 

  • Cheverud, J. M., Rutledge, J. J., & Atchley, W. R. (1983). Quantitative genetics of development: Genetic correlations among age-specific trait values and the evolution of ontogeny. Evolution, 37(5), 895–905.

    Article  Google Scholar 

  • Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics, 39(6), 859.

    CAS  PubMed  Google Scholar 

  • Cumming, G. (2008). Replication and p intervals: p values predict the future only vaguely, but confidence intervals do much better. Perspectives on Psychological Science, 3(4), 286–300.

    Article  Google Scholar 

  • de Moor, M. H., Costa, P., Terracciano, A., Krueger, R., De Geus, E., Toshiko, T., et al. (2010). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17(3), 337–349.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dohm, M. (2002). Repeatability estimates do not always set an upper limit to heritability. Functional Ecology, 16(2), 273–280.

    Article  Google Scholar 

  • Eaves, L. J. (1988). Dominance alone is not enough. Behavior Genetics, 18(1), 27–33.

    Article  CAS  PubMed  Google Scholar 

  • Eaves, L. J., Last, K. A., Young, P. A., & Martin, N. G. (1978). Model-fitting approaches to the analysis of human behaviour. Heredity, 41(3), 249–320.

    Article  CAS  PubMed  Google Scholar 

  • Ebstein, R. (2006). The molecular genetic architecture of human personality: Beyond self-report questionnaires. Molecular Psychiatry, 11(5), 427–445.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, A. C., Rollmann, S. M., Morgan, T. J., & Mackay, T. F. (2006). Quantitative genomics of aggressive behavior in Drosophila melanogaster. PLoS Genetics, 2(9), e154.

    Article  PubMed Central  PubMed  Google Scholar 

  • Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. New York: Chapman & Hall.

    Google Scholar 

  • Fairbanks, L. A., Newman, T. K., Bailey, J. N., Jorgensen, M. J., Breidenthal, S. E., Ophoff, R. A., et al. (2004). Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biological Psychiatry, 55(6), 642–647.

    Article  PubMed  Google Scholar 

  • Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to quantitative genetics. Harlow, UK: Pearson.

    Google Scholar 

  • Fisher, R. A. (1918). XV.—The correlation between relatives on the supposition of Mendelian inheritance. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 52(02), 399–433.

    Article  Google Scholar 

  • Gelman, A. (2005). Analysis of variance—why it is more important than ever. The Annals of Statistics, 33(1), 1–53.

    Article  Google Scholar 

  • Gelman, A., & Shalizi, C. R. (2013). Philosophy and the practice of Bayesian statistics. British Journal of Mathematical and Statistical Psychology, 66, 8–38.

    Article  PubMed  Google Scholar 

  • Gianola, D., & de los Campos, G. (2009). Inferring genetic values for quantitative traits non-parametrically. Genetical Research, 90(06), 525–540.

    Article  Google Scholar 

  • Goldberg, A. D., Allis, C. D., & Bernstein, E. (2007). Epigenetics: A landscape takes shape. Cell, 128(4), 635.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, T. P., & Bernstein, I. S. (1973). Seasonal variation in sexual behavior of all male Rhesus troops. American Journal of Physical Anthropology, 38(2), 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2), 1–22.

    Google Scholar 

  • Hill, R., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., Payne, H., et al. (2003). Day length, latitude and behavioural (in) flexibility in baboons (Papio cynocephalus ursinus). Behavioral Ecology and Sociobiology, 53(5), 278–286.

    Google Scholar 

  • Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008). Data and theory point to mainly additive genetic variance for complex traits. PLoS Genetics, 4(2), e1000008.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hopkins, W. D., Adams, M. J., & Weiss, A. (2013). Genetic and environmental contributions to the expression of handedness in chimpanzees (Pan troglodytes). Genes, Brain and Behavior, 12, 446–452.

    Article  CAS  Google Scholar 

  • Hur, Y. M. (2007). Evidence for nonadditive genetic effects on Eysenck Personality Scales in South Korean twins. Twin Research and Human Genetics, 10(02), 373–378.

    Article  PubMed  Google Scholar 

  • Inoue-Murayama, M. (2009). Genetic polymorphism as a background of animal behavior. Animal Science Journal, 80(2), 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, W., Turkheimer, E., Gottesman, I. I., & Bouchard, T. J., Jr. (2009). Beyond heritability twin studies in behavioral research. Current Directions in Psychological Science, 18(4), 217–220.

    Article  Google Scholar 

  • Kandler, C. (2012). Nature and nurture in personality development: The case of neuroticism and extraversion. Current Directions in Psychological Science, 21(5), 290–296.

    Article  Google Scholar 

  • Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23(4), 707–740.

    Article  Google Scholar 

  • Keller, M. C., Coventry, W. M., Heath, A. C., & Martin, N. G. (2005). Widespread evidence for non-additive genetic variation in Cloninger’s and Eysenck’s personality dimensions using a twin plus sibling design. Behavior Genetics, 35, 707–721.

    Article  PubMed  Google Scholar 

  • Kerr, M. K., & Churchill, G. A. (2001). Statistical design and the analysis of gene expression microarray data. Genetics Research, 77(02), 123–128.

    CAS  Google Scholar 

  • King, J. E., Weiss, A., & Sisco, M. S. (2008). Aping humans: Age and sex effects in chimpanzee (Pan troglodytes) and human (Homo sapiens) personality. Journal of Comparative Psychology, 122, 418–427.

    Article  PubMed  Google Scholar 

  • Kruuk, L. E. B. (2004). Estimating genetic parameters in natural populations using the "animal model". Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359(1446), 873–890.

    Article  PubMed  Google Scholar 

  • Kruuk, L. E. B., & Hadfield, J. D. (2007). How to separate genetic and environmental causes of similarity between relatives. Journal of Evolutionary Biology, 20, 1890–1903.

    Article  CAS  PubMed  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain: Body size allometry. Evolution, 33(1), 402–416.

    Google Scholar 

  • Lawler, R. R., & Blomquist, G. E. (2010). Multivariate selection theory in primatology: An introduction to the concepts and literature. Open Anthropology Journal, 3, 206–229.

    Article  Google Scholar 

  • Lykken, D. T., Bouchard, T., Jr., McGue, M., & Tellegen, A. (1992). Emergenesis: Genetic traits that may not run in familes. American Psychologist, 47, 1565–1577.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M., & Walsh, B. (1998). Genetics and analysis of quantitative traits. Sunderland, MA: Sinauer.

    Google Scholar 

  • Maas, C. J., & Hox, J. J. (2005). Sufficient sample sizes for multilevel modeling. Methodology, 1(3), 86–92.

    Google Scholar 

  • Majolo, B., & Koyama, N. (2006). Seasonal effects on reconciliation in Macaca fuscata yakui. International Journal of Primatology, 27(5), 1383–1397.

    Article  Google Scholar 

  • Majolo, B., Ventura, R., & Koyama, N. F. (2005). Sex, rank and age differences in the Japanese macaque (Macaca fuscata yakui) participation in inter-group encounters. Ethology, 111(5), 455–468.

    Article  Google Scholar 

  • Maruhashi, T. (1981). Activity patterns of a troop of Japanese monkeys (Macaca fuscata yakui) on Yakushima Island, Japan. Primates, 22(1), 1–14.

    Article  Google Scholar 

  • Mendoza, S. P., Lowe, E. L., Resko, J. A., & Levine, S. (1978). Seasonal variations in gonadal hormones and social behavior in squirrel monkeys. Physiology & Behavior, 20(5), 515–522.

    Article  CAS  Google Scholar 

  • Merilä, J., & Sheldon, B. C. (1999). Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity, 83(2), 103–109.

    Article  PubMed  Google Scholar 

  • Meuwissen, T., Hayes, B., & Goddard, M. (2013). Accelerating improvement of livestock with genomic selection. Annual Review of Animal Biosciences, 1(1), 221–237.

    Article  CAS  Google Scholar 

  • Moore, A. J., Brodie III, E. D., & Wolf, J. B. (1997). Interacting phenotypes and the evolutionary process: I. Direct and indirect genetic effects of social interactions. Evolution, 51(5), 1352–1362.

  • Morrissey, M. B., & Wilson, A. J. (2010). pedantics: an R package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Molecular Ecology Resources, 10(4), 711–719.

    Article  PubMed  Google Scholar 

  • Morrissey, M. B., Wilson, A. J., Pemberton, J. M., & Ferguson, M. M. (2007). A framework for power and sensitivity analyses for quantitative genetic studies of natural populations, and case studies in Soay sheep (Ovis aries). Journal of Evolutionary Biology, 20(6), 2309–2321.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, S., & Schielzeth, H. (2010). Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biological Reviews, 85(4), 935–956.

    PubMed  Google Scholar 

  • Nussey, D., Wilson, A., & Brommer, J. (2007). The evolutionary ecology of individual phenotypic plasticity in wild populations. Journal of Evolutionary Biology, 20(3), 831–844.

    Article  CAS  PubMed  Google Scholar 

  • Ostner, J., Kappeler, P., & Heistermann, M. (2002). Seasonal variation and social correlates of androgen excretion in male redfronted lemurs (Eulemur fulvus rufus). Behavioral Ecology and Sociobiology, 52(6), 485–495.

    Article  Google Scholar 

  • Phillips, P. C., & Arnold, S. J. (1999). Hierarchical comparison of genetic variance-covariance matrices. I. Using the Flury hierarchy. Evolution, 53(5), 1506–1515.

    Google Scholar 

  • Poissant, J., Réale, D., Martin, J. G. A., Festa-Bianchet, M., & Coltman, D. W. (2013). A quantitative trait locus analysis of personality in wild bighorn sheep. Ecology and Evolution, 3(3), 474–481.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, J. L., Charmantier, A., Garant, D., & Sheldon, B. C. (2006). Data depth, data completeness, and their influence on quantitative genetic estimation in two contrasting bird populations. Journal of Evolutionary Biology, 19(3), 994–1002.

    Article  CAS  PubMed  Google Scholar 

  • Rice, S. H. (2004). Evolutionary theory: Mathematical and conceptual foundations. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Robinson, M. R., & Beckerman, A. P. (2013). Quantifying multivariate plasticity: Genetic variation in resource acquisition drives plasticity in resource allocation to components of life history. Ecology Letters, 16, 281–290.

    Article  PubMed  Google Scholar 

  • Ross, S. (2009). North American regional chimpanzee studbook (Pan troglodytes). Chicago: Linocln Park Zoo.

    Google Scholar 

  • Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420–428.

    Article  CAS  PubMed  Google Scholar 

  • Slate, J. (2013). From Beavis to beak colour: A simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits. Evolution, 67(5), 1251–1262.

    PubMed  Google Scholar 

  • Sokal, R., & Rohlf, F. (1995). Biometry (3rd ed.). New York: W. H. Freeman.

    Google Scholar 

  • Strier, K. B., Ziegler, T. E., & Wittwer, D. J. (1999). Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Hormones and Behavior, 35(2), 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Uher, J. (2011). Individual behavioral phenotypes: An integrative meta-theoretical framework. Why “behavioral syndromes” are not analogs of “personality”. Developmental Psychobiology, 53(6), 521–548.

    Article  PubMed  Google Scholar 

  • Uher, J., Addessi, E., & Visalberghi, E. (2013). Contextualised behavioural measurements of personality differences obtained in behavioural tests and social observations in adult capuchin monkeys (Cebus apella). Journal of Research in Personality, 47(4), 427–444.

    Article  Google Scholar 

  • van Oers, K., Drent, P. J., de Jong, G., & van Noordwijk, A. J. (2004). Additive and nonadditive genetic variation in avian personality traits. Heredity, 93(5), 496–503.

    Article  PubMed  Google Scholar 

  • Ventura, R., Majolo, B., Schino, G., & Hardie, S. (2005). Differential effects of ambient temperature and humidity on allogrooming, self–grooming, and scratching in wild Japanese macaques. American Journal of Physical Anthropology, 126(4), 453–457.

    Article  PubMed  Google Scholar 

  • Weiss, A., Bates, T. C., & Luciano, M. (2008). Happiness is a personal(ity) thing – The genetics of personality and well-being in a representative sample. Psychological Science, 19, 205–210.

    Article  PubMed  Google Scholar 

  • Weiss, A., King, J. E., & Enns, R. M. (2002). Subjective well-being is heritable and genetically correlated with dominance in chimpanzees (Pan troglodytes). Journal of Personality and Social Psychology, 83, 1141–1149.

    Article  PubMed  Google Scholar 

  • Weiss, A., King, J. E., & Figueredo, A. J. (2000). The heritability of personality factors in chimpanzees (Pan troglodytes). Behavior Genetics, 30, 213–221.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A. J., Réale, D., Clements, M. N., Morrissey, M. M., Postma, E., Walling, C. A., et al. (2009). An ecologist's guide to the animal model. Journal of Animal Ecology, 79(1), 13–26.

    Article  Google Scholar 

  • Wilson, R. S. (1978). Synchronies in mental development: An epigenetic perspective. Science, 202(4371), 939–948.

    Article  CAS  PubMed  Google Scholar 

  • Wolak, M. E. (2012). nadiv : An R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods in Ecology and Evolution, 3(5), 792–796.

    Article  Google Scholar 

Download references

Acknowledgments

I thank Matt Robinson and two anonymous reviewers for their comments on this manuscript. I am indebted to Alex Weiss, Ana Maria Fernández, Jarrod Hadfield, Lauren Brent, Loeske Kruuk, Luis Apiolaza, Jocelyn Poissant, Elisabeth Bolund, Anna Santure, and Isabel Winney for their high-yielding discussions that prompted me to write this all down. I also thank Antje Engelhardt for inviting me to speak on these topics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark James Adams.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, M.J. Feasibility and Uncertainty in Behavior Genetics for the Nonhuman Primate. Int J Primatol 35, 156–168 (2014). https://doi.org/10.1007/s10764-013-9722-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9722-8

Keywords

Navigation