International Journal of Primatology

, Volume 35, Issue 1, pp 11–31 | Cite as

The Major Histocompatibility Complex and Primate Behavioral Ecology: New Tools and Future Questions

Article

Abstract

Since the serendipitous discovery of the effect of the major histocompatibility complex (MHC) on mate choice in laboratory mice nearly 40 yr ago, there has been sustained interest in the role that MHC genes may play in vertebrate sexual behavior. However, the challenges posed by MHC genotyping have long hampered progress in this area. We briefly introduce the documented links between MHC and behavior, before presenting an overview of the genotyping methods that were available before the introduction of new sequencing technologies. We then clarify why next-generation sequencing represents a major breakthrough in MHC genotyping by reviewing the recent successes —and pitfalls— of pioneer studies applying these techniques, before envisioning their revolutionary implications for future MHC studies in evolutionary ecology and primatology. We hope that our practical guidance to the design of MHC-based projects will promote and facilitate the integration of a MHC component into the research agendas of primatologists.

Keywords

Kin discrimination major histocompatibility complex mate choice MHC genotyping next-generation sequencing primates sexual behavior 

References

  1. Aksenov, A. A., Gojova, A., Zhao, W., Morgan, J. T., Sankaran, S., Sandrock, C., et al. (2012). Characterization of volatile organic compounds in human leukocyte antigen heterologous expression systems: A cell's "chemical odor fingerprint". Chembiochem, 13, 1053–1059.PubMedCrossRefGoogle Scholar
  2. Alberts, B. (2002). Isolating, cloning and sequencing DNA. In B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, & P. Walter (Eds.), Molecular biology of the cell (4th ed.). New York: Garland.Google Scholar
  3. Alberts, S. C., & Ober, C. (1993). Genetic variability in the major histocompatibility complex: a review of non-pathogen-mediated selective mechanisms. Yearbook of Physical Anthropology, 36, 71–89.CrossRefGoogle Scholar
  4. Alvergne, A., Huchard, E., Caillaud, D., Charpentier, M. J. E., Setchell, J. M., Ruppli, C., Féjan, D., Martinez, L., Cowlishaw, G., & Raymond, M. (2009). Human ability to recognize kin visually within primates. International Journal of Primatology, 30, 199–210.Google Scholar
  5. Apanius, V., Penn, D., Slev, P., Ruff, L. R., & Potts, W. K. (1997). The nature of selection on the major histocompatibility complex. Critical Review of Immunology, 17, 179–224.CrossRefGoogle Scholar
  6. Babik, W. (2010). Methods for MHC genotyping in non-model vertebrates. Molecular Ecology Resources, 10, 237–251.PubMedCrossRefGoogle Scholar
  7. Babik, W., Taberlet, P., Ejsmond, M. J., & Radwan, J. (2009). New generation sequencers as a tool for genotyping of highly polymorphic multilocus MHC system. Molecular Ecology Resources, 9(3), 713–719.PubMedCrossRefGoogle Scholar
  8. Balloux, F., Amos, W., & Coulson, T. (2004). Does heterozygosity estimate inbreeding in real populations? Molecular Ecology, 13(10), 3021–3031.PubMedCrossRefGoogle Scholar
  9. Bernatchez, L., & Landry, C. (2003). MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology, 16, 363–377.PubMedCrossRefGoogle Scholar
  10. Blais, J., Rico, C., van Oosterhout, C., Cable, J., Turner, G. F., & Bernatchez, L. (2007). MHC adaptive divergence between closely related and sympatric African Cichlids. PloS One, 8, 1–12.Google Scholar
  11. Brown, J. L., & Eklund, A. (1994). Kin recognition and the major histocompatibility complex—an integrative review. American Naturalist, 143(3), 435–461.CrossRefGoogle Scholar
  12. Célerier, A., Huchard, E., Alvergne, A., Féjan, D., Plard, F., Cowlishaw, G., Raymond, M., & Bonnadona, F. (2010). Detective mice assess relatedness in baboons using olfactory cues. Journal of Experimental Biology, 213, 1399–1405.PubMedCrossRefGoogle Scholar
  13. Chaix, R., Cao, C., & Donelly, P. (2008). Is mate choice in humans MHC-Dependent? PLoS Genetics, 4, 1–5.CrossRefGoogle Scholar
  14. Charpentier, M., Crawford, J., Boulet, M., & Drea, C. (2010). Lemurs detect the genetic relatedness and quality of conspecifics via olfactory cues. Animal Behaviour, 80, 101–108.CrossRefGoogle Scholar
  15. Charpentier, M. J. E., Boulet, M., & Drea, C. M. (2008). Smelling right: the scent of male lemurs advertises genetic quality and relatedness. Molecular Ecology, 17, 3225–3233.PubMedCrossRefGoogle Scholar
  16. Cheetham, S. A., Thom, M. D., Jury, F., Ollier, W. E. R., Beynon, R. J., & Hurst, J. L. (2007). The genetic basis of individual-recognition signals in the mouse. Current Biology, 17, 1771–1777.PubMedCrossRefGoogle Scholar
  17. Cowlishaw, G., & Dunbar. (1991). Dominance rank and mating success in male primates. Animal Behaviour, 41, 1045–1056.CrossRefGoogle Scholar
  18. de Groot, N. G., Otting, N., Doxiadis, G. G., Balla-Jhagjhoorsingh, S. S., Heener, J. L., Van Rood, J. J., Gagneux, P., & Bontrop, R. E. (2002). Evidence for an ancient selective sweep in the MHC class I gene repertoire of chimpanzees. Proceedings of the National Academy of Sciences of the United States, 99, 11748–11753.Google Scholar
  19. de Groot, N., Doxiadis, G. G., de Vos-Rouweler, A. J., de Groot, N. G., Verschoor, E. J., & Bontrop, R. E. (2008). Comparative genetics of a highly divergent DRB microsatellite in different macaque species. Immunogenetics, 60, 737–748.PubMedCrossRefGoogle Scholar
  20. Dixson, A. F. (1998). Primate sexuality: Comparative studies of the prosimians, monkeys, apes, and human beings. Oxford: Oxford University Press.Google Scholar
  21. Doherty, P. C., & Zinkernagel, R. M. (1975). Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature, 256, 50–52.PubMedCrossRefGoogle Scholar
  22. Doxiadis, G. G., De Groot, N., Claas, F. H. J., Doxiadis, I. I. N., van Rood, J. J., & Bontrop, R. E. (2007). A highly divergent microsatellite facilitating fast and accurate DRB haplotyping in humans and rhesus macaques. Proceedings of the National Academy of Sciences of the USA, 104, 8907–8912.PubMedCrossRefGoogle Scholar
  23. Ehlers, A., Beck, S., Forbes, S., Trowsdale, J., Uchanska-Ziegler, B., Volz, A., Younger, R., & Ziegler, A. (2000). MHC-Linked olfactory receptor loci exhibit polymorphism and contribute to extended HLA/OR-haplotypes. Genome Research, 10, 1968–1978.PubMedCrossRefGoogle Scholar
  24. Eizaguirre, C., Lenz, T. L., Kalbe, M., & Milinski, M. (2012). Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecology Letters, 15, 723–731.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Eizaguirre, C., Lenz, T. L., Traulsen, A., & Milinski, M. (2009a). Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecology Letters, 12, 5–12.PubMedCrossRefGoogle Scholar
  26. Eizaguirre, C., Yeates, S. E., Lenz, T. L., Kalbe, M., & Milinski, M. (2009b). MHC-based mate choice combines good genes and maintenance of MHC polymorphism. Molecular Ecology, 18, 3316–3329.PubMedCrossRefGoogle Scholar
  27. Galan, M., Guivier, E., Caraux, G., Charbonnel, N., & Cosson, J.-F. (2010). A 454 multiplex sequencing method for rapid and reliable genotyping of highly polymorphic genes in large-scale studies. BMC Genomics, 11, 296.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Gavrilets, S. (2004). Fitness landscapes and the origin of species. Princeton, NJ: Princeton University Press.Google Scholar
  29. Gowaty, P. A. (2004). Sex roles, contests for the control of reproduction, and sexual selection. In P. K. Kappeler & C. P. Van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 37–54). Cambridge, U.K.: Cambridge University Press.CrossRefGoogle Scholar
  30. Havlicek, J., & Roberts, C. (2009). MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology, 34, 497–512.PubMedCrossRefGoogle Scholar
  31. Heymann, E. W. (2006). The neglected sense of smell in primate behavior, ecology and evolution. American Journal of Primatology, 68, 514–524.Google Scholar
  32. Horton, R., Wilming, L., Rand, V., Lovering, R. C., Bruford, E. A., Khodiyar, V. K., Lush, M. J., Povey, S., Talbot, C. C., Wright, M. W., Wain, H. M., Trowsdale, J., Ziegler, A., & Beck, S. (2004). Gene map of the extended human MHC. Nature Reviews Genetics, 5, 889–899.Google Scholar
  33. Hoskin, C. J., & Higgie, M. (2010). Speciation via species interactions: the divergence of mating traits within species. Ecology Letters, 13, 409–420.PubMedCrossRefGoogle Scholar
  34. Huchard, E., Albrecht, C., Schliehe-Diecks, S., Baniel, A., Roos, C., Kappeler, P., & Brameier, M. (2012). Large-scale MHC class II genotyping of a wild lemur population by next generation sequencing. Immunogenetics, 64(12), 895–913.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Huchard, E., Baniel, A., Schliehe-Diecks, S., & Kappeler, P. M. (2013). MHC-disassortative mate choice and inbreeding avoidance in a solitary primate. Molecular Ecology, 22, 4071–4086.Google Scholar
  36. Huchard, E., Cowlishaw, G., Raymond, M., Weill, M., & Knapp, L. A. (2006). Molecular study of Mhc-DRB in wild chacma baboons reveals high variability and evidence for trans-species inheritance. Immunogenetics, 58(10), 805–816.PubMedCrossRefGoogle Scholar
  37. Huchard, E., Knapp, L. A., Wang, J., Raymond, M., & Cowlishaw, G. (2010a). MHC, mate choice and heterozygote advantage in a wild social primate. Molecular Ecology, 19, 2545–2561.PubMedGoogle Scholar
  38. Huchard, E., Raymond, M., Benavides, J., Marshall, H., Knapp, L. A., & Cowlishaw, G. (2010b). A female signal reflects MHC genotype in a social primate. BMC Evolutionary Biology, 10, 10.Google Scholar
  39. Huchard, E., Weill, M., Cowlishaw, G., Raymond, M., & Knapp, L. A. (2008). Polymorphism, haplotype composition, and selection in the Mhc-DRB of wild baboons. Immunogenetics, 60, 585–598.PubMedCrossRefGoogle Scholar
  40. Hughes, A. L., & Yeager, M. (1998). Natural selection at major histocompatibility complex loci of vertebrates. Annual Review of Genetics, 32, 415–432.PubMedCrossRefGoogle Scholar
  41. Hurst, J. L., Payne, C. E., Nevison, C. M., Marie, A. D., Humphries, R. E., Robertson, D. H. L., Cavaggioni, A., & Beynon, R. J. (2001). Individual recognition in mice mediated by major urinary proteins. Nature, 414, 631–634.PubMedCrossRefGoogle Scholar
  42. Hurst, J. L., Thom, M. D., Nevison, C. M., Humphries, R. E., & Beynon, R. J. (2005). MHC odours and not required or sufficient for recognition of individuals scent owners. Proceedings of the Royal Society of London B: Biological Sciences, 272, 715–724.CrossRefGoogle Scholar
  43. Janeway, C., Travers, P., Walport, M., & Shlombick, M. (2005). Immunobiology: The immune system in health and disease (6th ed.). New York: Garland.Google Scholar
  44. Kappeler, P. M. (2002). Sexual selection in primates: new and comparative perspectives. Evolutionary Anthropology, 11, 173–175.CrossRefGoogle Scholar
  45. Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740.CrossRefGoogle Scholar
  46. Kappeler, P. M., & Watts, D. P. (Eds.). (2012). Long-term field studies of primates. Heidelberg: Springer.Google Scholar
  47. Kazem, A., & Widdig, A. (2013). Visual phenotype matching: cues to paternity are present in rhesus macaque faces. PloS One, 8, e55846.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kessler, S. E., Scheumann, M., Nash, L. T., & Zimmerman, E. (2012). Paternal kin recognition in the high frequency/ultrasonic range in a solitary foraging mammal. BMC Ecology, 12, 26.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Knapp, L. A. (2005a). The ABC'S of MHC. Evolutionary Anthropology, 14, 28–37.CrossRefGoogle Scholar
  50. Knapp, L. A. (2005b). Denaturating gradient gel electrophoresis and its use in the detection of major histocompatibility complex polymorphisms. Tissue Antigens, 65, 211–219.PubMedCrossRefGoogle Scholar
  51. Knapp, L. A. (2007). Selection on MHC: a matter of form over function. Heredity, 99, 241–242.PubMedCrossRefGoogle Scholar
  52. Knapp, L. A., Cadavid, L. F., Eberle, M. E., Knechtle, S. J., Bontrop, R. E., & Watkins, D. I. (1997). Identification of new Mamu-DRB alleles using DGGE and direct sequencing. Immunogenetics, 45, 171–179.PubMedCrossRefGoogle Scholar
  53. Kwak, J., Willse, A., Matsumura, K., Opiekun, M. C., Yi, W., Preti, G., Yamazaki, K., & Beauchamp, G. K. (2008). Genetically-based olfactory signatures persist despite dietary variation. PloS One, 3, 10.CrossRefGoogle Scholar
  54. Kwak, J., Willse, A., Preti, G., Yamazaki, K., & Bauchamp, G. K. (2011). In search of the chemical basis for MHC odourtypes. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2417–2425.CrossRefGoogle Scholar
  55. Laurent, R., & Chaix, R. (2012). MHC-dependent mate choice in humans: why genomic patterns from the HapMap European American dataset support the hypothesis. BioEssays, 34, 267–271.PubMedCrossRefGoogle Scholar
  56. Leinders-Zufall, T., Brennan, P., Widmayer, P., Chandramani, P., Maul-Pavicic, A., Jager, M., Li, X. H., Breer, H., Zufall, F., & Boehm, T. (2004). MHC class I peptides as chemosensory signals in the vomeronasal organ. Science, 306(5698), 1033–1037.Google Scholar
  57. Logan, D. W., Marton, T. F., & Stowers, L. (2008). Species specificity in major urinary proteins by parallel evolution. PloS One, 3, e3280.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Lukas, D., Bradley, B. J., Nsubuga, A. M., Doran-Sheehy, D., Robbins, M. M., & Vigilant, L. (2004). Major histocompatibility complex and microsatellite variation in two populations of wild gorillas. Molecular Ecology, 13, 3389–3402.PubMedCrossRefGoogle Scholar
  59. Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews Genetics, 11, 31–46.PubMedCrossRefGoogle Scholar
  60. Milinski, M. (2006). The major histocompatibility complex, sexual selection, and mate choice. Annual Review of Ecology, Evolution, and Systematics, 37, 159–186.CrossRefGoogle Scholar
  61. Milinski, M., Croy, I., Hummel, T., & Boehm, T. (2013). Major histocompatibility complex peptide ligands as olfactory cues in human body odour assessment. Proceedings of the Royal Society B, 280, 20122889.Google Scholar
  62. Mitani, J. C., Call, J., Kappeler, P. M., Palombit, R. A., & Silk, J. B. (Eds.). (2012). The evolution of primate societies. Chicago: University of Chicago Press.Google Scholar
  63. Myers, R. M., Fischer, S. G., Lerman, L. S., & Maniatis, T. (1987). Nearly all single base substitutions in DNA fragments joined to GC-clamp can be detected by denaturing gradient gel electrophoresis. Nucleic Acids Research, 13, 3131–3145.CrossRefGoogle Scholar
  64. Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., & Sekiya, T. (1989). Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proceedings of the National Academy of Sciences of the USA, 86, 2766–2770.PubMedCrossRefGoogle Scholar
  65. Otting, N., Heijmans, C. M. C., Noort, R. C., de Groot, N. G., Doxiadis, G. G. M., van Rood, J. J., Watkins, D. I., & Bontrop, R. E. (2005). Unparalleled complexity of the MHC class I region in rhesus macaques. Proceedings of the National Academy of Sciences of the USA, 102, 1626–1631.PubMedCrossRefGoogle Scholar
  66. Parr, L. A., Heintz, M., Lonsdorf, E., & Wroblewski, E. (2010). Visual kin recognition in nonhuman primates (Pan troglodytes and Macaca mulatta): Inbreeding avoidance or male distinctiveness? Journal of Comparative Psychology, 124, 343–350.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Penn, D. J. (2002). The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology, 108, 1–21.CrossRefGoogle Scholar
  68. Penn, D. J., & Potts, W. K. (1999). The evolution of mating preferences and major histocompatibility genes. American Naturalist, 153, 145–164.CrossRefGoogle Scholar
  69. Piertney, S. B., & Oliver, M. K. (2006). The evolutionary ecology of the major histocompatibility complex. Heredity, 96(1), 7–21.PubMedGoogle Scholar
  70. Port, M., & Kappeler, P. M. (2010). The utility of reproductive skew models in the study of male primates: a critical evaluation. Evolutionary Anthropology: Issues, News, and Reviews, 19(2), 46–56.CrossRefGoogle Scholar
  71. Potts, W. K., & Wakeland, E. K. (1993). Evolution of MHC genetic diversity: a tale of incest, pestilence and sexual preference. Trends in Genetics, 9, 408–412.PubMedCrossRefGoogle Scholar
  72. Rendall, D., Rodman, P. S., & Edmond, R. E. (1996). Vocal recognition of individuals and kin in free-ranging rhesus monkeys. Animal Behaviour, 51, 1007–1015.CrossRefGoogle Scholar
  73. Robinson, J., Mistry, K., McWilliam, H., Lopez, R., Parham, P., & Marsh, S. G. E. (2011). The IMGT/HLA database. Nucleic Acids Research, 39(Supplement 1), D1171–D1176.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Ruff, N. S., Nelson, A. C., Kubinak, J. L., & Potts, W. K. (2012). MHC signaling during social communication. In C. Lopez-Larrea (Ed.), Self and non-self (pp. 290–313). New York: Landes Bioscience and Springer Science+Business Media.CrossRefGoogle Scholar
  75. Sauermann, U., Nurnberg, P., Bercovitch, F. B., Berard, J. D., Trefilov, A., Widdig, A., Kessler, M., Schmidtke, J., & Krawczak, M. (2001). Increased reproductive success of MHC class II heterozygous males among free-ranging rhesus macaques. Human Genetics, 108(3), 249–254.Google Scholar
  76. Schad, J., Sommer, S., & Ganzhorn, J. U. (2004). MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conservation Genetics, 5, 299–309.CrossRefGoogle Scholar
  77. Schwensow, N., Eberle, M., & Sommer, S. (2008a). Compatibility counts: MHC-associated mate choice in a wild promiscuous primate. Proceedings of the Royal Society of London B: Biological Sciences, 275(1634), 555–564.CrossRefGoogle Scholar
  78. Schwensow, N., Fietz, J., Dausmann, K., & Sommer, S. (2008b). MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate. Evolutionary Ecology, 22, 617–636.CrossRefGoogle Scholar
  79. Sepil, I., Moghadam, H. K., Huchard, E., & Sheldon, B. C. (2012). Characterization and 454 pyrosequencing of major histocompatibility complex class I genes in the great tit reveal complexity in a passerine system. BMC Evolutionary Biology, 12, 68.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Setchell, J. M., Charpentier, M. J. E., Abbott, K. M., Wickings, E. J., & Knapp, L. A. (2010). Opposites attract: MHC-associated mate choice in a polygynous primate. Journal of Evolutionary Biology, 23, 136–148.PubMedCrossRefGoogle Scholar
  81. Setchell, J. M., & Huchard, E. (2010). The hidden benefits of sex: evidence for MHC-associated mate choice in primate societies. BioEssays, 32, 940–948.PubMedCrossRefGoogle Scholar
  82. Setchell, J. M., & Kappeler, P. M. (2003). Selection in relation to the sex in primates. Advances in the Study of Behaviour, 33, 87–176.CrossRefGoogle Scholar
  83. Setchell, J. M., Charpentier, M., Abbott, K. A., Wickings, E. J., & Knapp, L. A. (2009). Is brightest best? Testing the Hamilton-Zuk hypothesis in mandrills. International Journal of Primatology, 30, 825–844.Google Scholar
  84. Setchell, J. M., Vaglio, S., Abbott, K. M., Moggi-Cecchi, J., Boscaro, F., Pieraccini, G., & Knapp, L. A. (2011). Odour signals major histocompatibility complex genotype in an Old World Monkey. Proceedings of the Royal Society of London B: Biological Sciences, 278, 274–280.CrossRefGoogle Scholar
  85. Shendure, J., & Ji, H. L. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.PubMedCrossRefGoogle Scholar
  86. Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology, 2, 16.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Sommer, S., Schwab, D., & Ganzhorn, J. U. (2002). MHC diversity of endemic Malagasy rodents in relation to range contraction and social system. Behavioral Ecology and Sociobiology, 51, 214–221.CrossRefGoogle Scholar
  88. Thom, M. D., Stockley, P., Beynon, R. J., & Hurst, J. L. (2008). Scent, mate choice and genetic heterozygosity. In J. L. Hurst, R. J. Beynon, S. C. Roberts, & T. D. Wyatt (Eds.), Chemical signals in vertebrates 11 (pp. 291–301). New York: Springer.CrossRefGoogle Scholar
  89. Trivers, R. L. (1972). Parental investment and sexual selection. In P. Campbell (Ed.), Sexual selection and the descent of man (pp. 136–179). London: Heinemann.Google Scholar
  90. Tung, J., Alberts, S. C., & Wray, G. A. (2010). Evolutionary genetics in wild primates: combining genetic approaches with field studies of natural populations. Nature Genetics, 26, 353–362.Google Scholar
  91. Villinger, J., & Waldman, B. (2012). Social discrimination by quantitative assessment of immunogenetic similarity. Proceedings of the Royal Society of London B: Biological Sciences, 279, 4368–4374.CrossRefGoogle Scholar
  92. Waldman, B. (1988). The ecology of kin recognition. Annual Review of Ecology and Systematics, 19, 543–571.CrossRefGoogle Scholar
  93. Wegner, K. M. (2009). Massive parallel MHC genotyping: titanium that shines. Molecular Ecology, 18, 1818–1820.PubMedCrossRefGoogle Scholar
  94. Wegner, K. M., Reusch, T. B. H., & Kalbe, M. (2003). Multiple parasites are driving major histocompatibility complex polymorphism in the wild. Journal of Evolutionary Biology, 16, 224–232.PubMedCrossRefGoogle Scholar
  95. Weisrock, D. W., Rasoloarison, R. M., Fiorentino, I., Ralison, J. M., Goodman, S. M., & Kappeler, P. M. (2010). Delimiting species without nuclear monophyly in Madagascar's mouse lemurs. PloS One, 5, e9883.PubMedCentralPubMedCrossRefGoogle Scholar
  96. Widdig, A. (2007). Paternal kin discrimination: the evidence and likely mechanisms. Biological Reviews, 82, 319–334.PubMedCrossRefGoogle Scholar
  97. Willse, A., Kwak, J., Yamazaki, K., Preti, G., Wahl, J. H., & Beauchamp, G. K. (2006). Individual odortypes: interaction of MHC and background genes. Immunogenetics, 58, 967–982.PubMedCrossRefGoogle Scholar
  98. Woelfing, B., Traulsen, A., Milinski, M., & Boehm, T. (2009). Does intra-individual major histocompatibility complex diversity keep a golden mean? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 117–128.PubMedCrossRefGoogle Scholar
  99. Yamazaki, K., & Beauchamp, G. K. (2007). Genetic basis for MHC-dependent mate choice. Advances in Genetics, 59, 130–145.Google Scholar
  100. Yamazaki, K., Beauchamp, G. K., Curran, M., Bard, J., & Boyse, E. A. (2000). Parent–progeny recognition as a function of MHC odortype identity. Proceedings of the National Academy of Sciences of the USA, 97, 10500–10502.PubMedCrossRefGoogle Scholar
  101. Yamazaki, K., Boyse, E. A., Miké, V., Thaler, H. T., Mathieson, B. J., Abbott, J., Boyse, J., Zayas, Z. A., & Thomas, L. (1976). Control of mating preferences in mice by genes in the major histocompatibility complex. The Journal of Experimental Medicine, 144, 1324–1335.Google Scholar
  102. Younger, R. M., Amadou, C., Bethel, G., Ehlers, A., Lindahl, K. F., Forbes, S., Horton, R., Milne, S., Mungall, A. J., Trowsdale, J., Volz, A., Ziegler, A., & Beck, S. (2001). Characterization of clustered MHC-linked olfactory receptor genes in human and mouse. Genome Research, 11(4), 519–530.Google Scholar
  103. Zagalska-Neubauer, M., Babik, W., Stuglik, M., Guftafsson, L., Cichon, M., & Radwan, J. (2010). 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evolutionary Biology, 10, 395.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.Behavioral Ecology and Sociobiology UnitGerman Primate CenterGöttingenGermany

Personalised recommendations