Skip to main content
Log in

The Roles of Phytoestrogens in Primate Ecology and Evolution

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Most primates depend heavily on plant foods; thus their chemical composition is key to understanding primate ecology and evolution. One class of plant compounds of strong current interest are phytoestrogens, which have the potential to alter fertility, fecundity, and survival. These plant compounds mimic the activity of vertebrate estrogens, resulting in altered physiology and behavior. Here, we review what is known about phytoestrogens from an ecological and evolutionary perspective. Much of what is known about the effects of phytoestrogens on the endocrine system comes from research on human foods, especially soybeans (Glycine max). Two opposing perspectives have resulted from this research: 1) phytoestrogens provide health benefits, such as cancer prevention, or 2) phytoestrogens act as endocrine disruptors and threaten reproductive health. Studies of wild primates have only recently begun examining the presence of estrogenic plants in the primate diet and the effects of their consumption. Evidence that a number of primate species eat plants containing phytoestrogens and research documenting behavioral and hormonal effects of estrogenic plant consumption for red colobus monkeys (Procolobus rufomitratus) augment captive and laboratory studies to suggest that these compounds promote differential survival and reproduction. Although much debate is currently taking place over the role of phytoestrogens and other endocrine disruptors in human health issues and in threatening biodiversity, we argue that an ecological and evolutionary approach is needed to reach appropriate conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott, D. H., Keverne, E. B., Bercovitch, F. B., Shively, C. A., Medoza, S. P., Saltzman, W., Snowdon, C. T., Ziegler, T. E., Banjevic, M., Garland, T., & Sapolsky, R. M. (2003). Are subordinants always stressed? A comparative analysis of rank differences in cortisol levels among primates. Hormones and Behavior, 43, 67–82.

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz, H., Höckerstedt, K., Bannwart, C., Bloigu, S., Hämäläinen, E., Fotsis, T., & Ollus, A. (1987). Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). The Journal of Steroid Biochemistry and Molecular Biology, 27, 1135–1144.

    Article  CAS  Google Scholar 

  • Almstrup, K., Fernandez, M. F., Petersen, J. H., Olea, N., Skakkebaek, N. E., & Leffers, H. (2002). Dual effects of phytoestrogens result in u-shaped dose-response curves. Environmental Health Perspectives, 110, 743–748.

    Article  PubMed  CAS  Google Scholar 

  • Ball, E., Caniglia, M., Wilcox, J., Overton, K., Burr, M., Wolfe, B., Sanders, B., Wisniewski, A., & Wrenn, C. (2010). Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats. Hormones and Behavior, 57, 313–322.

    Article  PubMed  CAS  Google Scholar 

  • Bauchop, T., & Martucci, R. W. (1968). Ruminant-like digestion of the langur monkey. Science, 161, 698–700.

    Article  PubMed  CAS  Google Scholar 

  • Beck, V., Unterrieder, E., Krenn, L., Kubelka, W., & Jungbauer, A. (2003). Comparison of hormonal activity (estrogen, androgen and progestin) of standardized plant extracts for large scale use in hormone replacement therapy. The Journal of Steroid Biochemistry and Molecular Biology, 84, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Bennetts, H., & Underwood, E. (1951). The oestrogenic effects of subterranean clover (Trifolium subterraneum): uterine maintenance in the ovariectomised ewe on clover grazing. The Australian Journal of Experimental Biology and Medical Science, 29, 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Berger, P., Negus, N., Sanders, E., & Gardner, P. (1981). Chemical triggering of reproduction in Microtus montanus. Science, 214, 69–70.

    Article  PubMed  CAS  Google Scholar 

  • Berger, P., Sanders, E., Gardner, P., & Negus, N. (1977). Phenolic plant compounds functioning as reproductive inhibitors in Microtus montanus. Science, 195, 575–577.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, M. A., & Chapman, C. A. (2005). Tree leaf chemical characters: selective pressures by folivorous primates and invertebrates. African Journal of Ecology, 43, 242–250.

    Article  Google Scholar 

  • Cederroth, C. R., Auger, J., Zimmermann, C., Eustache, F., & Nef, S. (2010a). Soy, phyto-oestrogens and male reproductive function: a review. International Journal of Andrology, 33, 304–316.

    Article  PubMed  CAS  Google Scholar 

  • Cederroth, C. R., Zimmermann, C., Beny, J. L., Schaad, O., Combepine, C., Descombes, P., Doerge, D. R., Pralong, F. P., Vassalli, J. D., & Nef, S. (2010b). Potential detrimental effects of a phytoestrogen-rich diet on male fertility in mice. Molecular and Cellular Endocrinology, 321, 152–160.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Bjorndal, K. A., & Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. International Journal of Primatology, 23, 283–310.

    Article  Google Scholar 

  • Chapman, C. A., Wasserman, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–534.

    Article  PubMed  Google Scholar 

  • Cline, J., & Wood, C. (2009). Estrogen/isoflavone interactions in cynomolgus macaques (Macaca fascicularis). American Journal of Primatology, 71, 722–731.

    Article  PubMed  CAS  Google Scholar 

  • Coldham, N. G., & Sauer, M. J. (2000). Pharmacokinetics of [C-14]genistein in the rat: gender-related differences, potential mechanisms of biological action, and implications for human health. Toxicology and Applied Pharmacology, 164, 206–215.

    Article  PubMed  CAS  Google Scholar 

  • Coley, P. D., & Barone, J. A. (1996). Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics, 27, 305–335.

    Article  Google Scholar 

  • Cornwell, T., Cohick, W., & Raskin, I. (2004). Dietary phytoestrogens and health. Phytochemistry, 65, 995–1016.

    Article  PubMed  CAS  Google Scholar 

  • DeGabriel, J. L., Moore, B. D., Foley, W. J., & Johnson, C. N. (2009). The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology, 90, 711–719.

    Article  PubMed  Google Scholar 

  • Dixon, R. (2004). Phytoestrogens. Annual Review of Plant Biology, 55, 225–261.

    Article  PubMed  CAS  Google Scholar 

  • Emery Thompson, M., Wilson, M. L., Gobbo, G., Muller, M. N., & Pusey, A. E. (2008). Hyperprogesteronemia in response to Vitex fischeri consumption in wild chimpanzees (Pan troglodytes schweinfurthii). American Journal of Primatology, 70, 1064–1071.

    Article  PubMed  Google Scholar 

  • Fashing, P. J., Dierenfeld, E. S., & Mowry, C. B. (2007). Influence of plant and soil chemistry on food selection, ranging patterns, and biomass of Colobus guereza in Kakamega Forest, Kenya. International Journal of Primatology, 28, 673–703.

    Article  Google Scholar 

  • Feeny, P. (1970). Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565–581.

    Article  Google Scholar 

  • Fidler, A. E., Lawrence, S. B., & Mcnatty, K. P. (2008). An hypothesis to explain the linkage between kakapo (Strigops habroptilus) breeding and the mast fruiting of their food trees. Wildlife Research, 35, 1–7.

    Article  Google Scholar 

  • Foley, W. J., & Moore, B. D. (2005). Plant secondary metabolites and vertebrate herbivores - from physiological regulation to ecosystem function. Current Opinion in Plant Biology, 8, 430–435.

    Article  PubMed  CAS  Google Scholar 

  • Forbey, J. S., Harvey, A. L., Huffman, M. A., Provenza, F. D., Sullivan, R., & Tasdemir, D. (2009). Exploitation of secondary metabolites by animals: a response to homeostatic challenges. Integrative and Comparative Biology, 49, 314–328.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J., Starcevic, M., Jones, P., Burow, M., & McLachlan, J. (2004). Phytoestrogen signaling and symbiotic gene activation are disrupted by endocrine-disrupting chemicals. Environmental Health Perspectives, 112, 672–677.

    Article  PubMed  CAS  Google Scholar 

  • Freeland, W., & Janzen, D. (1974). Strategies in herbivory by mammals: the role of plant secondary compounds. American Naturalist, 108, 269–289.

    Article  CAS  Google Scholar 

  • Ganzhorn, J. U. (1992). Leaf chemistry and the biomass of folivorous primates in tropical forests: test of a hypothesis. Oecologia, 91, 540–547.

    Article  Google Scholar 

  • Garey, J. (1993). Dietary estrogens as a cue for primate breeding seasons. American Journal of Physical Anthropology, S16, 92.

    Google Scholar 

  • Glander, K. (1978). Howling monkey feeding behavior and plant secondary compounds: A study of strategies. In G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 561–573). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Glander, K. E. (1980). Reproduction and population growth in free-ranging mantled howling monkeys. American Journal of Physical Anthropology, 53, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Guillette, L. J., Jr. (2000). Contaminant-induced endocrine disruption in wildlife. Growth Hormone & IGF Research, 10(Suppl B), S45–S50.

    Article  Google Scholar 

  • Gultekin, E., & Yildiz, F. (2006). Introduction to phytoestrogens. In F. Yildiz (Ed.), Phytoestrogens in functional foods (pp. 3–18). Boca Raton: CRC Press.

    Google Scholar 

  • Hadley, M. (1999). Endocrinology (5th ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Harborne, J. (1993). Introduction to ecological biochemistry (4th ed.). San Francisco: Elsevier Academic Press.

    Google Scholar 

  • Harrison, R., Phillippi, P., Swan, K., & Henson, M. (1999). Effect of genistein on steroid hormone production in the pregnant rhesus monkey. Proceedings of the Society for Experimental Biology and Medicine, 222, 78–84.

    Article  PubMed  CAS  Google Scholar 

  • Hartley, D., Edwards, J., Spiller, C., Alom, N., Tucci, S., Seth, P., Forsling, M., & File, S. (2003). The soya isoflavone content of rat diet can increase anxiety and stress hormone release in the male rat. Psychopharmacology, 167, 46–53.

    PubMed  CAS  Google Scholar 

  • Hayes, T., Collins, A., Lee, M., Mendoza, M., Noriega, N., Stuart, A., & Vonk, A. (2002). Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses. Proceedings of the National Academy of Sciences of the United States of America, 99, 5476–5480.

    Article  PubMed  CAS  Google Scholar 

  • Hayes, T. B. (2005). Welcome to the revolution: integrative biology and assessing the impact of endocrine disruptors on environmental and public health. Integrative and Comparative Biology, 45, 321–329.

    Article  PubMed  CAS  Google Scholar 

  • Heftmann, E. (1977). Functions of steroids in plants. Phytochemistry, 14, 891–901.

    Article  Google Scholar 

  • Heldring, N., Pike, A., Andersson, S., Matthews, J., Cheng, G., Hartman, J., Tujague, M., Strom, A., Treuter, E., Warner, M., & Gustafsson, J. A. (2007). Estrogen receptors: how do they signal and what are their targets. Physiological Reviews, 87, 905–931.

    Article  PubMed  CAS  Google Scholar 

  • Henry, L., & Witt, D. (2002). Resveratrol: phytoestrogen effects on reproductive physiology and behavior in female rats. Hormones and Behavior, 41, 220–228.

    Article  PubMed  CAS  Google Scholar 

  • Higham, J. P., Ross, C., Warren, Y., Heistermann, M., & MacLarnon, A. M. (2007). Reduced reproductive function in wild baboons (Papio hamadryas anubis) related to natural consumption of the African black plum (Vitex doniana). Hormones and Behavior, 52, 384–390.

    Article  PubMed  CAS  Google Scholar 

  • Huffman, M. A. (1997). Current evidence for self-medication in primates: a multidisciplinary perspective. Yearbook of Physical Anthropology, 40, 171–200.

    Article  Google Scholar 

  • Huffman, M. A. (2001). Self-medicative behavior in the African great apes: an evolutionary perspective into the origins of human traditional medicine. Bioscience, 51, 651–661.

    Article  Google Scholar 

  • Hughes, C. L., Jr. (1988). Phytochemical mimicry of reproductive hormones and modulation of herbivore fertility by phytoestrogens. Environmental Health Perspectives, 78, 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Iino, M., Nomura, T., Tamaki, Y., Yamada, Y., Yoneyama, K., Takeuchi, Y., Mori, M., Asami, T., Nakano, T., & Yokota, T. (2007). Progesterone: its occurrence in plants and involvement in plant growth. Phytochemistry, 68, 1664–1673.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, A., & Skoczowski, A. (2005). Mammalian sex hormones in plants. Folia Histochemica Et Cytobiologica, 43, 71–79.

    PubMed  CAS  Google Scholar 

  • Jaroenporn, S., Malaivijitnond, S., Wattanasirmkit, K., Trisomboon, H., Watanabe, G., Taya, K., & Cherdshewasart, W. (2006). Effects of Pueraria mirifica, an herb containing phytoestrogens, on reproductive organs and fertility of adult male mice. Endocrine, 30, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Karowe, D. N., & Radi, J. K. (2011). Are the phytoestrogens genistein and daidzein anti-herbivore defenses? A test using the gypsy moth (Lymantria dispar). Journal of Chemical Ecology, 37, 830–837.

    Article  PubMed  CAS  Google Scholar 

  • Kouki, T., Kishitake, M., Okamoto, M., Oosuka, I., Takebe, M., & Yamanouchi, K. (2003). Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Hormones and Behavior, 44, 140–145.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, A., Stathis, P., Permuth, S., Tokes, L., & Feldman, D. (1993). Bisphenol-a: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132, 2279–2286.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, I., Klocke, J., & Asano, S. (1983). Effects of ingested phytoecdysteroids on the growth and development of two lepidopterous larvae. Journal of Insect Physiology, 29, 307–316.

    Article  CAS  Google Scholar 

  • Kuiper, G., Lemmen, J., Carlsson, B., Corton, J., Safe, S., van der Saag, P., van der Burg, B., & Gustafsson, J. (1998). Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology, 139, 4252–4263.

    Article  PubMed  CAS  Google Scholar 

  • Leitman, D. C., Paruthiyil, S., Vivar, O. I., Saunier, E. F., Herber, C. B., Cohen, I., Tagliaferri, M., & Speed, T. P. (2010). Regulation of specific target genes and biological responses by estrogen receptor subtype agonists. Current Opinion in Pharmacology, 10, 629–636.

    Article  PubMed  CAS  Google Scholar 

  • Leopold, A. S., Erwin, M., Oh, J., & Browning, B. (1976). Phytoestrogens: adverse effects on reproduction in California quail. Science, 191, 98–100.

    Article  PubMed  CAS  Google Scholar 

  • Lu, A., Beehner, J. C., Czekala, N. M., Koenig, A., Larney, E., & Borries, C. (2011). Phytochemicals and reproductive function in wild female phayre's leaf monkeys (Trachypithecus phayrei crepusculus). Hormones and Behavior, 59, 28–36.

    Article  PubMed  CAS  Google Scholar 

  • Mazur, W. (1998). Phytoestrogen content in foods. Baillière's Clinical Endocrinology and Metabolism, 12, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Mazur, W., & Adlercreutz, H. (1998). Naturally occurring oestrogens in food. Pure and Applied Chemistry, 70, 1759–1776.

    Article  CAS  Google Scholar 

  • Mckey, D. B., Gartlan, J. S., Waterman, P. G., & Choo, G. M. (1981). Food selection by black colobus monkeys (Colobus satanas) in relation to plant chemistry. Biological Journal of the Linnean Society, 16, 115–146.

    Article  Google Scholar 

  • Milton, K. (1979). Factors influencing leaf choice by howler monkeys: a test of some hypotheses of food selection by generalist herbivores. American Naturalist, 114, 362–378.

    Article  CAS  Google Scholar 

  • Milton, K. (1980). The foraging strategy of howler monkeys: A study in primate economics. New York: Columbia University Press.

    Google Scholar 

  • Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the colobinae. International Journal of Primatology, 19, 513–548.

    Article  Google Scholar 

  • Milton, K. (2000). Back to basics: why foods of wild primates have relevance for modern human health. Nutrition, 16, 480–483.

    Article  PubMed  CAS  Google Scholar 

  • Nash, L., & Whitten, P. (1989). Preliminary observations on the role of Acacia gum chemistry in Acacia utilization by Galago senegalensis in Kenya. American Journal of Primatology, 17, 27–39.

    Article  Google Scholar 

  • Nunn, C. (2011). The comparative approach in evolutionary anthropology and biology. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilva, G. L., & Mole, S. (1990). Determinants of variation in tropical forest primate biomass—new evidence from West Africa. Ecology, 71, 328–343.

    Article  Google Scholar 

  • Patisaul, H. (2005). Phytoestrogen action in the adult and developing brain. Journal of Neuroendocrinology, 17, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Patisaul, H., & Bateman, H. (2008). Neonatal exposure to endocrine active compounds or an ERβ agonist increases adult anxiety and aggression in gonadally intact male rats. Hormones and Behavior, 53, 580–588.

    Article  PubMed  CAS  Google Scholar 

  • Patisaul, H., Burke, K., Hinkle, R., Adewale, H., & Shea, D. (2009). Systemic administration of diarylpropionitrile (DPN) or phytoestrogens does not affect anxiety-related behaviors in gonadally intact male rats. Hormones and Behavior, 55, 319–328.

    Article  PubMed  CAS  Google Scholar 

  • Patisaul, H., Luskin, J., & Wilson, M. (2004). A soy supplement and tamoxifen inhibit sexual behavior in female rats. Hormones and Behavior, 45, 270–277.

    Article  PubMed  CAS  Google Scholar 

  • Reynaud, J., Guilet, D., Terreux, R., Lussignol, M., & Walchshofer, N. (2005). Isoflavonoids in non-leguminous families: an update. Natural Product Reports, 22, 504–515.

    Article  PubMed  CAS  Google Scholar 

  • Robbins, C. T., Hagerman, A. E., Austin, P. J., Mcarthur, C., & Hanley, T. A. (1991). Variation in mammalian physiological-responses to a condensed tannin and its ecological implications. Journal of Mammalogy, 72, 480–486.

    Article  Google Scholar 

  • Rothman, J. M., Chapman, C. A., & Van Soest, P. J. (2012). Methods in primate nutritional ecology: a user's guide. International Journal of Primatology, 33, 542–566.

    Article  Google Scholar 

  • Schloms, L., Storbeck, K. H., Swart, P., Gelderblom, W. C., & Swart, A. C. (2012). The influence of Aspalathus linearis (rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in h295r cells. The Journal of Steroid Biochemistry and Molecular Biology, 128, 128–138.

    Article  PubMed  CAS  Google Scholar 

  • Setchell, K. D., & Clerici, C. (2010). Equol: history, chemistry, and formation. Journal of Nutrition, 140, 1355S–1362S.

    Article  PubMed  CAS  Google Scholar 

  • Sfakianos, J., Coward, L., Kirk, M., & Barnes, S. (1997). Intestinal uptake and biliary excretion of the isoflavone genistein in rats. Journal of Nutrition, 127, 1260–1268.

    PubMed  CAS  Google Scholar 

  • Sharpe, R., Martin, B., Morris, K., Greig, I., McKinnell, C., McNeilly, A., & Walker, M. (2002). Infant feeding with soy formula milk: effects on the testis and on blood testosterone levels in marmoset monkeys during the period of neonatal testicular activity. Human Reproduction, 17, 1692–1703.

    Article  PubMed  CAS  Google Scholar 

  • Simon, N., Kaplan, J., Hu, S., Register, T., & Adams, M. (2004). Increased aggressive behavior and decreased affiliative behavior in adult male monkeys after long-term consumption of diets rich in soy protein and isoflavones. Hormones and Behavior, 45, 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Strier, K. B. (1993). Menu for a monkey. Natural History, 102, 34–43.

    Google Scholar 

  • Thornton, J. (2001). Evolution of vertebrate steroid receptors from an ancestral estrogen receptor by ligand exploitation and serial genome expansions. Proceedings of the National Academy of Sciences of the United States of America, 98, 5671–5676.

    Article  PubMed  CAS  Google Scholar 

  • Thornton, J., Need, E., & Crews, D. (2003). Resurrecting the ancestral steroid receptor: ancient origin of estrogen signaling. Science, 301, 1714–1717.

    Article  PubMed  CAS  Google Scholar 

  • Trisomboon, H., Malaivijitnond, S., Cherdshewasart, W., Watanabe, G., & Taya, K. (2007). Assessment of urinary gonadotropin and steroid hormone profiles of female cynomolgus monkeys after treatment with Pueraria mirifica. Journal of Reproduction and Development, 53, 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Trisomboon, H., Malaivijitnond, S., Watanabe, G., & Taya, K. (2005). Ovulation block by Pueraria mirifica. Endocrine, 26, 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Wallis, J. (1997). A survey of reproductive parameters in the free-ranging chimpanzees of Gombe National Park. Journal of Reproduction and Fertility, 109, 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H. B., Dey, S. K., & Maccarrone, M. (2006). Jekyll and Hyde: two faces of cannabinoid signaling in male and female fertility. Endocrine Reviews, 27, 427–448.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, M. D., & Chapman, C. A. (2003). Determinants of colobine monkey abundance: the importance of food energy, protein and fibre content. Journal of Animal Ecology, 72, 650–659.

    Article  Google Scholar 

  • Wasserman, M. D., Chapman, C. A., Milton, K., Gogarten, J. F., Wittwer, D. J., & Ziegler, T. E. (2012a). Estrogenic plant consumption predicts red colobus monkey (Procolobus rufomitratus) hormonal state and behavior. Hormones and Behavior, 62, 553–562.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman, M. D., Taylor-Gutt, A., Rothman, J. M., Chapman, C. A., Milton, K., & Leitman, D. C. (2012b). Estrogenic plant foods of red colobus monkeys and mountain gorillas in Uganda. American Journal of Physical Anthropology, 148, 88–97.

    Article  PubMed  Google Scholar 

  • Whitten, P. (1983). Flowers, fertility, and females. American Journal of Physical Anthropology, 60, 269–270.

    Google Scholar 

  • Whitten, P. L., & Patisaul, H. B. (2001). Cross-species and interassay comparisons of phytoestrogen action. Environmental Health Perspectives, 109(Suppl 1), 5–20.

    PubMed  CAS  Google Scholar 

  • Whorwood, C. B., Sheppard, M. C., & Stewart, P. M. (1993). Licorice inhibits 11-beta-hydroxysteroid dehydrogenase messenger-ribonucleic-acid levels and potentiates glucocorticoid hormone action. Endocrinology, 132, 2287–2292.

    Article  PubMed  CAS  Google Scholar 

  • Wood, C., Cline, J., Anthony, M., Register, T., & Kaplan, J. (2004). Adrenocortical effects of oral estrogens and soy isoflavones in female monkeys. Journal of Clinical Endocrinology and Metabolism, 89, 2319–2325.

    Article  PubMed  CAS  Google Scholar 

  • Wuttke, W., Jarry, H., Christoffel, V., Spengler, B., & Seidlova-Wuttke, D. (2003). Chaste tree (Vitex agnus-castus) pharmacology and clinical indications. Phytomedicine, 10, 348–357.

    Article  PubMed  CAS  Google Scholar 

  • Wynne-Edwards, K. E. (2001). Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates. Environmental Health Perspectives, 109, 443–448.

    Article  PubMed  CAS  Google Scholar 

  • Ye, L., Su, Z. J., & Ge, R. S. (2011). Inhibitors of testosterone biosynthetic and metabolic activation enzymes. Molecules, 16, 9983–10001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Approvals for plant collections were received from the Uganda Wildlife Authority, Uganda National Council for Science and Technology, and U.S. Department of Agriculture. This publication was made possible in part by grant no. P51 RR000167 from the National Center for Research Resources (NCRR), a component of the National Institutes of Health (NIH), to the Wisconsin National Primate Research Center, University of Wisconsin–Madison, where measures of plant steroidal properties were conducted. This research was conducted in part at a facility constructed with support from Research Facilities Improvement Program grant nos. RR15459-01 and RR020141-01. This publication’s contents are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH. M. Wasserman received funding from the National Science Foundation (Doctoral Dissertation Improvement Grant (DDIG) no. 0823651 and Graduate Research Fellowship Program); the International Primatological Society; the University of California, Berkeley (UCB) Department of Environmental Science, Policy, and Management; UCB Center for African Studies; the UCB Chang-Lin Tien Scholars Program (funded by the Philomathia Foundation); and McGill University’s Tomlinson Postdoctoral Fellowship to support this research. Dale Leitman, Isao Kubo, Len Bjeldanes, Toni Ziegler, Dan Wittwer, Tyrone Hayes, Paul Falso, John Fleagle, Andrew Ritchie, Alexandra Taylor-Gutt, Julie Kearney Wasserman, the anonymous reviewers, Joanna Setchell, and Jessica Rothman provided very helpful comments in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael D. Wasserman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, M.D., Milton, K. & Chapman, C.A. The Roles of Phytoestrogens in Primate Ecology and Evolution. Int J Primatol 34, 861–878 (2013). https://doi.org/10.1007/s10764-013-9699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9699-3

Keywords

Navigation