Skip to main content

Advertisement

Log in

Monoamine Neurotransmitter Metabolites in the Cerebrospinal Fluid of a Group of Hybrid Baboons (Papio hamadryas × P. anubis)

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Comparatively little is known about the pathways of proximate causation that link divergent genotypes, via neurophysiological differences, to distinct, species-specific social behaviors and systems. One approach to the problem compares gross activity levels of monoamine neurotransmitters (norepinephrine, dopamine, and serotonin), evidenced by their metabolites —3-methoxy-4-hydroxyphenylglycol (MHPG), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA), respectively— in cerebrospinal fluid (CSF). We have applied this method to Papio hamadryas and P. anubis, closely related baboon species with divergent social behavior, living in the Awash National Park (ANP), Ethiopia. We had previously shown that adult males of the two species differ in the ratio of HVA to 5-HIAA, and in concentrations of MHPG and HVA, but not 5-HIAA. Here, we compare monoamine metabolite levels of the parental species with those of 49 members of a naturally formed, multigenerational hamadryas × anubis hybrid group. We cage-trapped the baboons in July 1998, sampled their CSF by cisternal puncture, and assayed monoamine metabolites by high-performance liquid chromatography. Previous findings suggested, anomalously, that hybrid males showed the high 5-HIAA levels predicted by the low-serotonin–early-dispersal hypothesis (originally based on observation of rhesus macaques, Macaca mulatta), while hamadryas did not. The present study failed to find higher 5-HIAA levels in hybrids, resolving the anomaly, but leaving the previous result unexplained. Among adult females (underrepresented in our sample) and juveniles, metabolite levels of the hybrids did not differ significantly from either parental species. Overall, adult male hybrids resembled anubis in HVA and HVA/5-HIAA ratio, but did not show the low MHPG levels characteristic of that species. Consistent with a significant genetic influence on species differences in these metabolites, the adult hybrids showed intermediate means and greater intra-population diversity than the parental species for most variables, but showed no indication of hybrid dysgenesis in the form of low intermetabolite correlation. To the contrary, an enhanced HVA–MHPG correlation in the hybrids suggested a species-associated factor (not necessarily genetic) influencing both of these monoamine neurotransmitter systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ǻgren, H., Mefford, I. N., Rudorfer, M. V., Linnoila, M., & Potter, W. Z. (1986). Interacting neurotransmitter systems: a non-experimental approach to the 5HIAA-HVA correlation in human CSF. Journal of Psychiatric Research, 20(3), 175–193.

    Article  PubMed  Google Scholar 

  • Arango, V., Huang, Y. Y., Underwood, M. D., & Mann, J. J. (2003). Genetics of the serotonergic system in suicidal behavior. Journal of Psychiatric Research, 37(5), 375–386.

    Article  PubMed  Google Scholar 

  • Barr, C. S., Newman, T. K., Becker, M. L., Champoux, M., Lesch, K. P., Suomi, S. J., et al. (2003). Serotonin transporter gene variation is associated with alcohol sensitivity in rhesus macaques exposed to early-life stress. Alcoholism, Clinical and Experimental Research, 27(5), 812–817.

    Article  PubMed  CAS  Google Scholar 

  • Barton, N. H., & Hewitt, G. M. (1989). Adaptation, speciation and hybrid zones. Nature, 341, 497–503.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, T. (2000). Mating behavior and reproductive success of hybrid male baboons. Ph.D. dissertation, Washington University.

  • Bergman, T. J., & Beehner, J. C. (2004). Social system of a hybrid baboon group (Papio anubis × P. hamadryas). International Journal of Primatology, 25(6), 1313–1330.

    Article  Google Scholar 

  • Bergman, T. J., Phillips‐Conroy, J. E., & Jolly, C. J. (2008). Behavioral variation and reproductive success of male baboons (Papio anubis × Papio hamadryas) in a hybrid social group. American Journal of Primatology, 70(2), 136–147.

    Google Scholar 

  • Botchin, M. B., Kaplan, J. R., Manuck, S. B., & Mann, J. J. (1993). Low versus high prolactin responders to fenfluramine challenge: marker of behavioral differences in adult male cynomolgus macaques. Neuropsychopharmacology, 9, 93–99.

    Article  PubMed  CAS  Google Scholar 

  • Boughman, J. W., Rundle, H. D., & Schluter, D. (2005). Parallel evolution of sexual isolation in sticklebacks. Evolution, 59(2), 361–373.

    PubMed  Google Scholar 

  • Brown, G. L., Ebert, M. H., Goyer, P. F., Jimerson, D. C., Klein, W. J., Bunney, W. E., et al. (1982). Aggression, suicide, and serotonin: relationships to CSF amine metabolites. The American Journal of Psychiatry, 139(6), 741–746.

    PubMed  CAS  Google Scholar 

  • Champoux, M., Bennett, A., Shannon, C., Higley, J. D., Lesch, K. P., & Suomi, S. J. (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Molecular Psychiatry, 7(10), 1058–1063.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, A. S., Kammerer, C. M., George, K. P., Kupfer, D. J., McKinney, W. T., Spence, M. A., et al. (1995). Evidence for heritability of biogenic amine levels in the cerebrospinal fluid of rhesus monkeys. Biological Psychiatry, 38(9), 572–577.

    Article  PubMed  CAS  Google Scholar 

  • Cleveland, W. S., & Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83(403), 596–610.

    Article  Google Scholar 

  • Cloninger, C. (1994). Temperament and personality. Findings and Current Opinion in Cognitive Neuroscience, 4, 266–273.

    Article  CAS  Google Scholar 

  • Curtin, F., Walker, J. P., Peyrin, L., Soulier, V., Badan, M., & Schulz, P. (1997). Reward dependence is positively related to urinary monoamines in normal men. Biological Psychiatry, 42(4), 275–281.

    Article  PubMed  CAS  Google Scholar 

  • Dingemanse, N., & Reale, D. (2005). Natural selection and animal personality. Behaviour, 142, 1159–1184.

    Article  Google Scholar 

  • Dobzhansky, T. (1970). Genetics of the evolutionary process. New York: Columbia University Press.

    Google Scholar 

  • Dunbar, R. I. M. (1988). Primate social systems. London: Chapman and Hall.

    Book  Google Scholar 

  • Fairbanks, L. A., Fontenot, M. B., Phillips-Conroy, J. E., Jolly, C. J., et al. (1999). CSF monoamines, age and impulsivity in wild grivet monkeys (Cercopithecus aethiops aethiops). American Journal of Primatology, 49(1), 49–50.

    Google Scholar 

  • Fairbanks, L. A., Jorgensen, M. J., Huff, A., Blau, K., Hung, Y. Y., & Mann, J. J. (2004a). Adolescent impulsivity predicts adult dominance attainment in male vervet monkeys. American Journal of Primatology, 64(1), 1–17.

    Article  PubMed  Google Scholar 

  • Fairbanks, L. A., Newman, T. K., Bailey, J. N., Jorgensen, M. J., Breidenthal, S. E., Ophoff, R. A., et al. (2004b). Genetic contributions to social impulsivity and aggressiveness in vervet monkeys. Biological Psychiatry, 55(6), 642–647.

    Article  PubMed  Google Scholar 

  • Falconer, D. S. (1989). Introduction to quantitative genetics (3rd ed.). New York: Longman.

    Google Scholar 

  • Fernstrom, J. D. (1981). Dietary precursors and brain neurotransmitter formation. Annual Review of Medicine, 32, 413–425.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J. D. (2005). Branched-chain amino acids and brain function. The Journal of Nutrition, 135(6), 1539S–1546S.

    Google Scholar 

  • Fernstrom, J. D., & Wurtman, R. J. (1972). Brain serotonin content: physiological regulation by plasma neutral amino acids. Science, 178(4059), 414–416.

    Google Scholar 

  • Freimer, N. B., Service, S. K., Ophoff, R. A., Jasinska, A. J., McKee, K., Villeneuve, A., et al. (2007). A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15811–15816.

    Article  PubMed  Google Scholar 

  • Garvey, M. J., Noyes, R., Jr., Cook, B., & Blum, N. (1996). Preliminary confirmation of the proposed link between reward-dependence traits and norepinephrine. Psychiatry Research, 65(1), 61–64.

    Article  PubMed  CAS  Google Scholar 

  • Geracioti, T. D., Jr., Keck, P. E., Jr., Ekhator, N. N., West, S. A., Baker, D. G., Hill, K. K., et al. (1998). Continuous covariability of dopamine and serotonin metabolites in human cerebrospinal fluid. Biological Psychiatry, 44(3), 228–233.

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg, B. E. (1994). Ontogeny, social experience and serotonergic functioning. In R. D. Maters & M. T. McGuire (Eds.), The neurotransmitter revolution: Serotonin, social behavior and the law (pp. 113–128). Carbondale: Southern Illinois University Press.

    Google Scholar 

  • Grimes, M. A., Cameron, J. L., & Fernstrom, J. D. (2000). Cerebrospinal fluid concentrations of tryptophan and 5-hydroxyindoleacetic acid in Macaca mulatta: diurnal variations and response to chronic changes in dietary protein intake. Neurochemical Research, 25(3), 413–422.

    Article  PubMed  CAS  Google Scholar 

  • Haldane, J. B. S. (1955). The measurement of variation. Evolution, 9(4), 484.

    Article  Google Scholar 

  • Harrison, R. G. (1990). Hybrid zones: windows on the evolutionary process. Oxford Surveys in Evolutionary Biology, 7, 69–128.

    Google Scholar 

  • Higley, J. D., Mehlman, P. T., Taub, D. M., Higley, S. B., Suomi, S. J., Linnoila, M., & Vickers, J. M. (1992a). Cerebrospinal fluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49, 436–441.

    Article  PubMed  CAS  Google Scholar 

  • Higley, J. D., Suomi, S. J., & Linnoila, M. (1992b). A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32, 127–145.

    Article  PubMed  CAS  Google Scholar 

  • Higley, J. D., Thompson, W. W., Champoux, M., Goldman, D., Hasert, M. F., Kraemer, G. W., Scanlan, J. M., Suomi, S. J., & Linnoila, M. (1993). Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoamine metabolites in rhesus monkeys (Macaca mulatta). Archives of General Psychiatry, 50, 615–623.

    Article  PubMed  CAS  Google Scholar 

  • Higley, J. D., Mehlman, P. T., Poland, R. E., Taub, D. M., Vickers, J., Suomi, S. J., & Linnoila, M. (1996). CSF testosterone and 5-HIAA correlate with different types of aggressive behaviors. Biological Psychiatry, 40, 1067–1082.

    Article  PubMed  CAS  Google Scholar 

  • Howell, S., Westergaard, G., Hoos, B., Chavanne, T. J., Shoaf, S. E., Cleveland, A., et al. (2007). Serotonergic influences on life-history outcomes in free-ranging male rhesus macaques. American Journal of Primatology, 69(8), 851–865.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, J. K., Agren, H., Bartko, J. J., Rudorfer, M. V., Linnoila, M., & Potter, W. Z. (1987). Monoamine neurotransmitter interactions and the prediction of antidepressant response. Archives of General Psychiatry, 44, 1078–1083.

    Article  PubMed  CAS  Google Scholar 

  • Hsiao, J. K., Potter, W. Z., Agren, H., Owen, R. R., & Pickar, D. (1993). Clinical investigation of monoamine neurotransmitter interactions. Psychopharmacology, 112, S76–S84.

    Article  PubMed  CAS  Google Scholar 

  • Insel, T. R., & Young, L. J. (2000). Neuropeptides and the evolution of social behavior. Current Opinion in Neurobiology, 10, 784–789.

    Article  PubMed  CAS  Google Scholar 

  • Jolly, C. J., Phillips-Conroy, J. E., Kaplan, J. R., & Mann, J. J. (2008). Cerebrospinal fluid monoaminergic metabolites in wild Papio anubis and P. hamadryas are concordant with taxon-specific behavioral ontogeny. International Journal of Primatology, 29(6), 1549–1566.

    Article  Google Scholar 

  • Kaplan, J. R., Fontenot, M. B., Berard, J., Manuck, S. B., & Mann, J. J. (1995). Delayed dispersal and elevated monoaminergic activity in free‐ranging rhesus monkeys. American Journal of Primatology, 35(3), 229–234.

    Google Scholar 

  • Kaplan, J., Phillips-Conroy, J., Fontenot, M., Jolly, C., Fairbanks, L., & Mann, J. (1999). Cerebrospinal fluid monoaminergic metabolites differ in wild Anubis and hybrid (Anubis × hamadryas) baboons: possible relationships to life history and behavior. Neuropsychopharmacology, 20(6), 519–524.

    Article  Google Scholar 

  • Kobayashi, K., Imazu, Y., Kawabata, M., & Shohmori, T. (1987). Effect of long-term storage on monoamine metabolite levels in human cerebrospinal fluid. Acta Medica Okayama, 41(4), 179–181.

    PubMed  CAS  Google Scholar 

  • Kummer, H. (1968). Two variations in the social organization of baboons. In P. Jay (Ed.), Primates (pp. 293–312). New York: Holt, Rinehart, Winston.

    Google Scholar 

  • Lorenz, K. (1958). The evolution of behavior. Scientific American, 199(6), 67–78.

    Article  PubMed  CAS  Google Scholar 

  • Maestripieri, D., McCormack, K., Lindell, S. G., Higley, J. D., & Sanchez, M. M. (2006). Influence of parenting style on the offspring’s behavior and CSF monoamine metabolite levels in crossfostered and noncrossfostered female rhesus macaques. Behavioral Brain Research, 175(1), 90–95.

    Article  CAS  Google Scholar 

  • Mann, J. J., McBride, P. A., Brown, R. P., Linnoila, M., Leon, A. C., DeMeo, M., Mieczkowski, T., Myers, J. E., & Stanley, M. (1992). Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric patients. Archives of General Psychiatry, 49, 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Mehlman, P. J., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J., Suomi, S. J., & Linnoila, M. (1995). Correlation of CSF 5-HIAA concentration with sociality and timing of emigration in free-ranging primates. The American Journal of Psychiatry, 152(6), 907–913.

    PubMed  CAS  Google Scholar 

  • Montoya, E. R., Terburg, D., Bos, P. A., & van Honk, J. (2012). Testosterone, cortisol, and serotonin as key regulators of social aggression: a review and theoretical perspective. Motivation and Emotion, 36, 65–73.

    Article  PubMed  Google Scholar 

  • Nagel, U. (1973). A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatologica, 19, 104–165.

    Article  CAS  Google Scholar 

  • Newman, T. K. (1997). Mitochondrial DNA analysis of intraspecific hybridization in Papio hamadryas anubis, P. h. hamadryas and their hybrids in the Awash National Park. Ph.D. dissertation, New York University.

  • Newman, T. K., Syagailo, Y. V., Barr, C. S., Wendland, J. R., Champoux, M., Graessle, M., et al. (2005). Monoamine oxidase A gene promoter variation and rearing experience influences aggressive behavior in rhesus monkeys. Biological Psychiatry, 57(2), 167–172.

    Article  PubMed  CAS  Google Scholar 

  • Nutt, D. J. (2008). Relationship of neurotransmitters to the symptoms of major depressive disorder. The Journal of Clinical Psychiatry, 69(Suppl E1), 4–7.

    PubMed  Google Scholar 

  • Packer, C. (1979). Intertroop transfer and inbreeding avoidance in Papio anubis. Animal Behaviour, 27, 1–36.

    Article  Google Scholar 

  • Packer, C., & Pusey, A. E. (1979). Female aggression and male membership in troops of Japanese macaques and olive baboons. Folia Primatologica (Basel), 31(3), 212–218.

    Article  CAS  Google Scholar 

  • Paredes, U. M., Bubb, V. J., Haddley, K., Macho, G. A., & Quinn, J. P. (2011). Intronic tandem repeat in the serotonin transporter gene in old world monkeys: a new transcriptional regulator? Journal of Molecular Neuroscience, 47, 401–407.

    Article  PubMed  Google Scholar 

  • Phillips-Conroy, J. E., & Jolly, C. J. (1986). Changes in the structure of the baboon hybrid zone in the Awash National Park, Ethiopia. American Journal of Physical Anthropology, 71, 337–350.

    Article  Google Scholar 

  • Phillips-Conroy, J. E., & Jolly, C. J. (1988). Dental eruption schedules of wild and captive baboons. American Journal of Primatology, 15(1), 17–29.

    Article  Google Scholar 

  • Phillips-Conroy, J. E., Bergman, T., & Jolly, C. J. (2000). Quantitative assessment of occlusal wear and age estimation in Ethiopian and Tanzanian baboons. In C. Jolly & P. F. Whitehead (Eds.), Old world monkeys (pp. 221–240). Cambridge, U.K.: Cambridge University Press.

    Google Scholar 

  • Pines, M., & Swedell, L. (2011). Not without a fair fight: failed abductions of females in wild hamadryas baboons. Primates, 52, 249–252.

    Article  PubMed  Google Scholar 

  • Prum, R. O. (1994). Phylogenetic analysis of the evolution of alternative social behavior in the manakins (Aves: Pipridae). Evolution, 48(5), 1657–1675.

    Article  Google Scholar 

  • Raleigh, M. J., McGuire, M. T., Brammer, G. L., Pollack, D. B., & Yuwiler, A. (1991). Serotonergic mechanisms promote dominance acquisition in adult male vervet monkeys. Brain Research, 559, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Mahaney, M. C., Witte, S. M., Nair, S., Newman, D., Wedel, S., et al. (2000). A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics, 67(3), 237–247.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J., Martin, L. J., Comuzzie, A. G., Mann, J. J., Manuck, S. B., Leland, M., et al. (2004). Genetics of monoamine metabolites in baboons: overlapping sets of genes influence levels of 5-hydroxyindolacetic acid, 3-hydroxy-4-methoxyphenylglycol, and homovanillic acid. Biological Psychiatry, 55(7), 739–744.

    Article  PubMed  CAS  Google Scholar 

  • Roy, A., Adinoff, B., & Linnoila, M. (1988). Acting out hostility in normal volunteers: negative correlations with 5-HIAA in cerebrospinal fluid. Psychiatry Research, 24, 187–194.

    Google Scholar 

  • Scheinin, M., Chang, W. H., Kirk, K. L., & Linnoila, M. (1983). Simultaneous determination of 3-methoxy-4-hydroxyphenylglycol, 5-hydroxyindoleacetic acid, and homovanillic acid in cerebrospinal fluid with high-performance liquid chromatography using electrochemical detection. Analytical Biochemistry, 131(1), 246–253.

    Google Scholar 

  • Sigg, H., Stolba, A., Abegglen, J.-J., & Dasser, D. (1982). Life history of hamadryas baboons: physical development, infant mortality, reproductive parameters and family relationships. Primates, 23(4), 473–487.

    Article  Google Scholar 

  • Soderstrom, H., Blennow, K., Sjodin, A. K., & Forsman, A. (2003). New evidence for an association between the CSF HVA:5-HIAA ratio and psychopathic traits. Journal of Neurology, Neurosurgery, and Psychiatry, 74(7), 918–921.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, K. (1979). Sociological study of a wild group of hybrid baboons between Papio anubis and P. hamadryas in the Awash Valley, Ethiopia. Primates, 20, 21–56.

    Article  Google Scholar 

  • Sugawara, K. (1988). Ethological study of the social behavior of hybrid baboons between Papio anubis and P. hamadryas in free-ranging groups. Primates, 29(4), 429–448.

    Article  Google Scholar 

  • Suomi, S. J. (2006). Risk, resilience, and gene x environment interactions in rhesus monkeys. Annals of the New York Academy of Sciences, 1094, 52–62.

    Article  PubMed  Google Scholar 

  • Swedell, L. (2002). Ranging behavior, group size and behavioral flexibility in Ethiopian hamadryas baboons (Papio hamadryas hamadryas). Folia Primatologica, 73, 95–103.

    Article  Google Scholar 

  • Swedell, L., Hailemeskel, G., & Schreier, A. (2008). Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from filoha. Folia Primatologica, 79, 476–490.

    Article  Google Scholar 

  • Tanner, J. M. (1986). Normal growth and techniques of growth assessment. Clinics in Endocrinology and Metabolism, 15(3), 411–451.

    Article  PubMed  CAS  Google Scholar 

  • Tate, R. F. (1954). Correlation between a discrete and a continuous variable: point-biserial correlation. Annals of Mathematical Statistics, 25(3), 603–607.

    Article  Google Scholar 

  • Weber, J. N., Peterson, B. K., & Hoekstra, H. E. (2013). Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature, 493, 402–405.

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard, M. J. (1983). Sexual selection, social competition, and speciation. The Quarterly Review of Biology, 58(2), 155–183.

    Article  Google Scholar 

  • Westergaard, G., Suomi, S. J., Higley, J. D., & Mehlman, P. J. (1999). CSF5–HIAA and aggression in female macaque monkeys: species and interindividual differences. Psychopharmacology, 146(4), 440–446.

    Article  PubMed  CAS  Google Scholar 

  • Woolley-Barker, T. (1999). Social organization and genetic structure in a baboon hybrid zone. Ph.D. dissertation, New York University.

  • Wurtman, R. J., & Fernstrom, J. D. (1975). Control of brain monoamine synthesis by diet and plasma amino acids. American Journal of Clinical Nutrition, 28, 638–647.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the General Manager, Ethiopian Wildlife Conservation Organization, the Warden and Staff of the Awash National Park, and the Biology Department, Addis Ababa University, for permitting and facilitating our research; Ato Minda Wondorfa for his many logistical contributions; the many graduate students who assisted in the field; Dr. Babette Fontenot, Dewayne Cairnes, and Melissa Ayers for their skilled collection of CSF; Dr. Yung-Yu Huang for expert assistance with the monoamine assays; and the editor and two anonymous reviewers for their many insightful comments on the manuscript. This work was supported by grants SBR9615150, the Center for Field Research/Earthwatch and the Harry Frank Guggenheim Foundation to C. J. Jolly and J. E. Phillips-Conroy and HL45666, HL79421 to J. R. Kaplan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford J. Jolly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolly, C.J., Phillips-Conroy, J.E., Kaplan, J.R. et al. Monoamine Neurotransmitter Metabolites in the Cerebrospinal Fluid of a Group of Hybrid Baboons (Papio hamadryas × P. anubis). Int J Primatol 34, 836–858 (2013). https://doi.org/10.1007/s10764-013-9698-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-013-9698-4

Keywords

Navigation