International Journal of Primatology

, Volume 34, Issue 4, pp 732–751 | Cite as

Hormonal Correlates of Divergent Growth Trajectories in Wild Male Anubis (Papio anubis) and Hamadryas (P. hamadryas) Baboons in the Awash River Valley, Ethiopia

  • Robin M. BernsteinEmail author
  • Heather Drought
  • Jane E. Phillips-Conroy
  • Clifford J. Jolly


Comparative investigations of hormone concentration and pattern during ontogeny can offer insight regarding the evolution of growth trajectories. Anubis (Papio anubis) and hamadryas (P. hamadryas) baboons exemplify primate populations at a crucial stage of phylogenetic divergence. Though not reproductively isolated, the species are distinguished by consistent morphological, behavioral, and physiological differences, including trajectories of growth and maturation associated with divergent male reproductive strategies. As a step toward understanding the proximate causes of these differences, we tested several hypotheses regarding the relationship of growth-regulatory hormones and binding proteins (insulin-like growth factor-I, insulin-like growth factor binding protein-3 [IGFBP-3], growth hormone binding protein, and testosterone) to growth in several measurements. We collected samples (N = 559) across 13 field seasons, from 7 different social groups. Samples came from 398 different individuals. We sampled 285 once; 76, twice; 29, three times; 5, four times; and 3, five times. Although ages at peak hormone concentrations were not significantly different, concentrations of all hormones and binding proteins measured, except testosterone, were higher in hamadryas than in anubis. All factors measured correlated positively with growth in both species, and IGFBP-3 and testosterone in particular correlated significantly with growth in all measurements. Overall, our findings suggest a role for the growth hormone/insulin-like growth factor axis in producing distinctive patterns of growth in these species.


Baboons Body size Growth Growth hormone binding protein Insulin-like growth factor Testosterone 



We thank the editor and two anonymous reviewers whose comments greatly improved this manuscript. We gratefully acknowledge the contribution of the many volunteers, graduate students, and colleagues who have helped to gather the data represented here; the financial support of the National Science Foundation (NSF SRF 9615150, NSF BCS 0051130), the Harry Frank Guggenheim Foundation, Earthwatch/Center for Field Research, the International Primatological Society, Washington University, New York University, and The George Washington University; the research permission granted by successive general managers of the Ethiopian Wildlife Conservation Organization; the collaboration of Addis Ababa University; and the invaluable practical assistance of the wardens and staff of the Awash National Park.


  1. Altmann, J., & Alberts, S. C. (2005). Growth rates in a wild primate population: Ecological influences and maternal effects. Behavioral Ecology and Sociobiology, 57, 490–501.CrossRefGoogle Scholar
  2. Baxter, R. C., & Martin, J. L. (1989). Structure of the Mr 140,000 growth hormone-dependent insulin-like growth factor binding protein complex: Determination by reconstitution and affinity-labeling. Proceedings of the National Academy of Sciences of the USA, 86, 6898–6902.PubMedCrossRefGoogle Scholar
  3. Beehner, J. C., Bergman, T. J., Cheney, D. L., Seyfarth, R. M., & Whitten, P. L. (2006). Testosterone predicts future dominance rank and mating activity among male chacma baboons. Behavioral Ecology and Sociobiology, 59, 469–479.CrossRefGoogle Scholar
  4. Beehner, J. C., Gesquiere, L., Seyfarth, R. M., Cheney, D. L., Alberts, S. C., & Altmann, J. (2009). Testosterone related to age and life-history stages in male baboons and geladas. Hormones and Behavior, 56, 472–480.PubMedCrossRefGoogle Scholar
  5. Bernstein, R. M. (2004). Hormones and body size evolution in Old World monkeys. Ph.D. thesis, University of Illinois at Urbana-Champaign.Google Scholar
  6. Bernstein, R. M., Leigh, S. R., Donovan, S. M., & Monaco, M. H. (2007). Hormones and body size evolution in papionin primates. American Journal of Physical Anthropology, 132, 247–260.PubMedCrossRefGoogle Scholar
  7. Bernstein, R. M., Leigh, S. R., Donovan, S. M., & Monaco, M. H. (2008). The hormonal regulation of ontogeny in Papio and Cercocebus. American Journal of Physical Anthropology, 136, 156–168.PubMedCrossRefGoogle Scholar
  8. Bernstein, R. M., Setchell, J. M., Verrier, D., & Knapp, L. A. (2012). Maternal effects and the endocrine regulation of mandrill growth. American Journal of Primatology, 74, 890–900.PubMedCrossRefGoogle Scholar
  9. Dastot, F., Sobrier, M., Duquesony, P., Duriez, B., Goosens, M., & Amselem, S. (1996). Alternatively spliced forms in the cytoplasmic domain of the human growth hormone (GH) receptor regulate its ability to generate a soluble GH-binding protein. Proceedings of the National Academy of Sciences of the USA, 93, 10723–10728.PubMedCrossRefGoogle Scholar
  10. Efron, B., & Tibshirani, R. (1991). Statistical data analysis in the computer age. Science, 253, 390–395.PubMedCrossRefGoogle Scholar
  11. Emlen, D. J., Warren, I. A., Johns, A., Dworkin, I., & Lavine, L. C. (2012). A mechanism of extreme growth and reliable signaling in sexually selected ornaments and weapons. Science, 337, 860–864.PubMedCrossRefGoogle Scholar
  12. Gesquiere, L. R., Onyango, P. O., Alberts, S. C., & Altmann, J. (2011). Endocrinology of year-round reproduction in a highly seasonal habitat: Environmental variability in testosterone and glucocorticoids in baboon males. American Journal of Physical Anthropology, 144, 169–176.PubMedCrossRefGoogle Scholar
  13. Gluckman, P. D., & Pinal, C. S. (2003). Regulation of fetal growth by the somatotrophic axis. Journal of Nutrition, 133, 1741S–1746S.PubMedGoogle Scholar
  14. Groves, C. P. (2001). Primate taxonomy. Washington, DC: Smithsonian Institution Press.Google Scholar
  15. Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: A role for parasites? Science, 218, 384–387.PubMedCrossRefGoogle Scholar
  16. Holzenberger, M., Kappeler, L., & De Magalhaes Filho, C. (2004). IGF-I signaling and aging. Experimental Gerontology, 39, 1761–1764.PubMedCrossRefGoogle Scholar
  17. Jolly, C. J. (1993). Species, subspecies, and baboon systematics. In W. H. Kimbel & L. B. Martin (Eds.), Species, species concepts, and primate evolution (pp. 67–107). New York: Plenum Press.Google Scholar
  18. Jolly, C. J. (2001). A proper study for mankind: Analogies from the papionin monkeys and their implications for human evolution. Yearbook of Physical Anthropology, 44, 177–204.CrossRefGoogle Scholar
  19. Jolly, C. J., & Phillips-Conroy, J. E. (2003). Testicular size, mating system, and maturation schedules in wild anubis and hamadryas baboons. International Journal of Primatology, 24, 125–142.CrossRefGoogle Scholar
  20. Jolly, C. J., Phillips-Conroy, J. E., Kaplan, J. R., & Mann, J. J. (2008). Cerebrospinal fluid monoaminergic metabolites in wild anubis (Papio anubis) and hamadryas (P. hamadryas) baboons are concordant with taxon-specific behavioral ontogeny. International Journal of Primatology, 29, 1549–1566.CrossRefGoogle Scholar
  21. Klover, P., & Hennighausen, L. (2007). Postnatal body growth is dependent on the transcription factors signal transducers and activators of transcription 5a/b in muscle: A role for autocrine/paracrine insulin-like growth factor I. Endocrinology, 148, 1489–1497.PubMedCrossRefGoogle Scholar
  22. Kummer, H. (1968). Social organization of hamadryas baboons: A field study. Chicago: University of Chicago Press.Google Scholar
  23. Kummer, H. (1984). From laboratory to desert and back: A social system of hamadryas baboons. Animal Behaviour, 32, 965–971.CrossRefGoogle Scholar
  24. Leigh, S. R. (1996). Evolution of human growth spurts. American Journal of Physical Anthropology, 101, 455–474.PubMedCrossRefGoogle Scholar
  25. Liu, J.-L., & LeRoith, D. (1999). Insulin-like growth factor I is essential for postnatal growth in response to growth hormone. Endocrinology, 140, 5178–5184.PubMedCrossRefGoogle Scholar
  26. Maor, G., Segev, Y., & Phillip, M. (1999). Testosterone stimulates insulin-like growth factor-I and insulin-like growth factor-I-receptor gene expression in the mandibular condule – a model of endochondral ossification. Endocrinology, 140, 1901–1910.PubMedCrossRefGoogle Scholar
  27. Nagel, U. (1973). A comparison of anubis baboons, hamadryas baboons and their hybrids at a species border in Ethiopia. Folia Primatologica, 19, 104–165.CrossRefGoogle Scholar
  28. Ong, K., Kratzsch, J., Kiess, W., Durge, D., & ALSPAC Study Team. (2002). Circulating IGF-I levels in childhood are related to both current body composition and early postnatal growth rate. Journal of Clinical Endocrinology and Metabolism, 87, 1041–1044.PubMedCrossRefGoogle Scholar
  29. Pazos, F., Sánchez-Franco, F., Balsa, J. A., Escalada, J., Palacios, N., & Cacicedo, L. (2000). Mechanisms of reduced body growth in the pubertal feminized male rat: Unbalanced estrogen and androgen action on the somatotropic axis. Pediatric Research, 48, 96–103.PubMedCrossRefGoogle Scholar
  30. Pete, G., Fuller, C. R., Oldham, J. M., Smith, D. R., D’Ercole, A. J., Kahn, C. R., & Lund, P. K. (1999). Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate-1-deficient mice. Endocrinology, 140, 5478–5487.PubMedCrossRefGoogle Scholar
  31. Phillips-Conroy, J. E., Bergman, T., & Jolly, C. J. (2000). Quantitative assessment of occlusal wear and age estimation in Ethiopian and Tanzanian baboons. In P. F. Whitehead & C. J. Jolly (Eds.), Old world monkeys (pp. 321–340). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Phillips-Conroy, J. E., & Jolly, C. J. (1981). Sexual dimorphism in two subspecies of Ethiopian baboons (Papio hamadryas) and their hybrids. American Journal of Physical Anthropology, 56, 115–129.PubMedCrossRefGoogle Scholar
  33. Phillips-Conroy, J. E., & Jolly, C. J. (1988). Dental eruption schedules of wild and captive baboons. American Journal of Primatology, 15, 17–29.CrossRefGoogle Scholar
  34. Phillips-Conroy, J. E., & Jolly, C. J. (2004). Male dispersal and philopatry in the Awash baboon hybrid zone. Primate Report, 68, 27–52.Google Scholar
  35. Phillips-Conroy, J. E., Jolly, C. J., & Brett, F. L. (1991). Characteristics of hamadryas-like male baboons living in anubis baboon troops in the Awash hybrid zone, Ethiopia. American Journal of Physical Anthropology, 86, 353–368.PubMedCrossRefGoogle Scholar
  36. Phillips-Conroy, J. E., Jolly, C. J., & Nystrom, P. D. (1986). Palmar dermatoglyphics as a means of identifying individuals in a baboon population. International Journal of Primatology, 7, 435–447.CrossRefGoogle Scholar
  37. Phillips-Conroy, J. E., Jolly, C. J., Nystrom, P. D., & Hemmalin, H. A. (1992). Migration of male hamadryas baboons into anubis groups in the Awash National Park, Ethiopia. International Journal of Primatology, 13, 455–476.CrossRefGoogle Scholar
  38. Pines, M., Saunders, J., & Swedell, L. (2011). Alternative routes to the leader male role in a multi-level society: Follower vs. solitary male strategies and outcomes in hamadryas baboons. American Journal of Primatology, 73, 679–691.PubMedCrossRefGoogle Scholar
  39. Plant, T. M. (1981). Time courses of concentrations of circulating gonadotropin, prolactin, testosterone, and cortisol in adult male Rhesus monkeys (Macaca mulatta) throughout the 24h light-dark cycle. Biology of Reproduction, 25, 244–252.PubMedCrossRefGoogle Scholar
  40. Rietveld, I., Janssen, J., Hofman, A., Pols, H., van Duijn, C., & Lamberts, S. (2003). A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels. European Journal of Endocrinology, 148, 171–175.PubMedCrossRefGoogle Scholar
  41. Sapolsky, R. M., & Spencer, E. M. (1997). Insulin-like growth factor I is suppressed in socially subordinate male baboons. American Journal of Physiology, 273, R1346–R1351.PubMedGoogle Scholar
  42. Scott, C. D., & Firth, S. M. (2004). The role of M6P/IGF-II receptor in cancer: Tumor suppression or garbage disposal? Hormone and Metabolic Research, 36, 261–271.PubMedCrossRefGoogle Scholar
  43. Shea, B. T., & Bailey, R. C. (1996). Allometry and adaptation of body proportions and stature in African pygmies. American Journal of Physical Anthropology, 100, 311–340.PubMedCrossRefGoogle Scholar
  44. Shea, B. T., Jammer, R. E., Brinster, R. L., & Ravosa, M. R. (1990). Relative growth of the skull and postcranium in giant transgenic mice. Genetic Research, 56, 21–34.CrossRefGoogle Scholar
  45. Shimizu, M., Swanson, P., Fukada, H., Hara, A., & Dickhoff, W. W. (2000). Comparison of extraction methods and assay validation for salmon insulin-like growth factor-I using commercially available components. General and Comparative Endocrinology, 119, 26–36.PubMedCrossRefGoogle Scholar
  46. Smith, R. J., & Leigh, S. R. (1998). Sexual dimorphism in primate neonatal body mass. Journal of Human Evolution, 34, 173–201.PubMedCrossRefGoogle Scholar
  47. Swedell, L. (2006). Strategies of sex and survival in hamadryas baboons: Through a female lens. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  48. Tinbergen, N. (1963). On aims and methods in ethology. Zeitschrift für Tierpsychologie, 20, 410–433.CrossRefGoogle Scholar
  49. Veldhuis, J. D. (1996). Gender differences in secretory activity of the human somatotropic (growth hormone) axis. European Journal of Endocrinology, 134, 287–295.PubMedCrossRefGoogle Scholar
  50. Veldhuis, J. D., King, J. C., Urban, R. J., Rogol, A. D., Evans, W. S., Kolp, L. A., & Johnson, M. L. (1987). Operating characteristics of the male hypothalamo-pituitary-gonadal axis: Pulsatile release of testosterone and follicle-stimulating hormone and their temporal coupling with luteinizing hormone. Journal of Clinical Endocrinology and Metabolism, 65, 929–941.PubMedCrossRefGoogle Scholar
  51. Zuckerman, S. (1932). The social life of monkeys and apes. London: K. Paul, Trench, Trubner & Co.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Robin M. Bernstein
    • 1
    • 4
    Email author
  • Heather Drought
    • 1
  • Jane E. Phillips-Conroy
    • 2
  • Clifford J. Jolly
    • 3
  1. 1.Department of AnthropologyThe George Washington UniversityWashingtonUSA
  2. 2.Department of Anatomy and NeurobiologyWashington University School of MedicineSt. LouisUSA
  3. 3.Department of AnthropologyNew York UniversityNew YorkUSA
  4. 4.Department of AnthropologyUniversity of Colorado, BoulderBoulderUSA

Personalised recommendations