International Journal of Primatology

, Volume 34, Issue 3, pp 515–532 | Cite as

Ecological Correlates of Ranging Behavior in Bearded Sakis (Chiropotes sagulatus) in a Continuous Forest in Guyana



Group size and the distribution and quality of food resources are among the most important determinants of primate ranging behavior. In this study, I use the framework of the ecological constraints model to assess correlates of range size of a free-ranging group of bearded sakis (Chiropotes sagulatus). Bearded sakis are among the widest ranging neotropical primates, yet the lack of data from continuous forest populations has made understanding the factors influencing such large ranges difficult. I collected data on ranging behavior and diet during 44 full-day follows over 15 mo. The focal group used a home range of ca. 1000 ha and had daily path lengths of 2.8–6.5 km (mean = 4.0 km). Daily path length did not significantly correlate with group size, patch quality, food availability, or the spatial distribution of feeding trees. Monthly home range size significantly positively correlated with group size and patch quality. The focal group had significantly shorter paths when ripe fruit consumption was higher and had more diverse diets, visited more food patches, and used larger monthly home ranges when they consumed a higher percentage of seeds. The results of this study, combined with other recent studies of Chiropotes in continuous forest, suggest that large home ranges (approaching 1000 ha) are characteristic of the genus. Although range size may be related to group size and food patch size, I suggest nutrient mixing and the need to balance the effects of seed secondary compounds as additional explanations for the large ranges of bearded sakis.


Daily path Home range Pitheciines 


  1. Altmann, J. (1974). Observational study of behavior: sampling methods. Behavior, 49, 227–267.CrossRefGoogle Scholar
  2. Ayres, J. M. (1981). Observações sobre a ecologia e o comportamento dos cuxius (Chiropotes albinasus e Chiropotes satanas, Cebidae: Primates). Belém (BR): Grafisa.Google Scholar
  3. Ayres, J. M. (1986). The white uakaris and the Amazonian flooded forests. Doctoral dissertation, Cambridge University.Google Scholar
  4. Ayres, J. M. (1989). Comparative feeding ecology of the uakari and bearded saki, Cacajao and Chiropotes. Journal of Human Evolution, 18, 697–716.CrossRefGoogle Scholar
  5. Bell, E. A. (1984). Toxic compounds in seeds. In D. R. Murray (Ed.), Seed physiology. Vol. 1: Development (pp. 245–262). Sydney: Academic Press.Google Scholar
  6. Bodmer, R. E. (1991). Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica, 23, 255–261.CrossRefGoogle Scholar
  7. Boubli, J.P. (1997). Ecology of the black uakari monkey, Cacajao melanocephalus melanocephalus, in Pico da Neblina National Park, Brazil. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  8. Bowler, M. (2007). The ecology and conservation of the red uakari monkey on the Yavari River, Peru. Doctoral dissertation, Canterbury University of Kent, Canterbury, U.K.Google Scholar
  9. Bowler, M., & Bodmer, R. (2009). Social behavior in fission-fusion groups of red uakari monkeys (Cacajao calvus ucayalii). American Journal of Primatology, 71, 976–987.PubMedCrossRefGoogle Scholar
  10. Boyle, S.A. (2008). The effects of forest fragmentation on primates in the Brazilian Amazon. Ph.D. dissertation, Arizona State University, Tempe.Google Scholar
  11. Boyle, S. A., & Smith, A. T. (2010). Behavioral modifications in northern bearded saki monkeys (Chiropotes satanas chiropotes) in forest fragments of central Amazonia. Primates, 51, 43–51.PubMedCrossRefGoogle Scholar
  12. Boyle, S. A., Lourenço, W. C., da Silva, L. R., & Smith, A. T. (2009a). Home range estimates vary with sample size and methods. Folia Primatologica, 80, 33–42.CrossRefGoogle Scholar
  13. Boyle, S. A., Lourenço, W. C., da Silva, L. R., & Smith, A. T. (2009b). Travel and spatial patterns change when Chiropotes satanas chiropotes inhabit forest fragments. International Journal of Primatology, 30, 515–531.CrossRefGoogle Scholar
  14. Boyle, S. A., Zartman, C. E., Spironello, W. R., & Smith, A. T. (2012). Implications of habitat fragmentation on the diet of bearded saki monkeys in central Amazonian forest. Journal of Mammalogy, 93, 959–976.CrossRefGoogle Scholar
  15. Chapman, C. A. (1988). Patterns of foraging and range use by three species of neotropical primates. Primates, 29(2), 177–194.CrossRefGoogle Scholar
  16. Chapman, C. A. (1990). Ecological constraints on group size in three species of neotropical primates. Folia Primatologica, 55, 1–9.CrossRefGoogle Scholar
  17. Chapman, C. A., & Chapman, L. J. (2000). Determinants of group size in social primates: The importance of travel costs. In S. Boinski & P. Garber (Eds.), On the move: How and why animals travel in groups (pp. 24–42). Chicago: University of Chicago Press.Google Scholar
  18. Chapman, C. A., Wrangham, R. W., & Chapman, L. J. (1995). Ecological constraints on group size: an analysis of spider monkey and chimpanzee subgroups. Behavioral Ecology and Sociobiology, 36, 59–70.CrossRefGoogle Scholar
  19. Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., & McDowell, L. R. (2003). Variation in the nutritional value of primate foods among trees, time periods, and areas. International Journal of Primatology, 24, 317–333.CrossRefGoogle Scholar
  20. Clutton-Brock, T. H., & Harvey, P. H. (1977). Species differences in feeding and ranging behaviour in primates. In T. H. Clutton-Brock (Ed.), Primate ecology: Studies of feeding and ranging behaviour in lemurs, monkeys and apes (pp. 557–584). London: Academic Press.Google Scholar
  21. Davies, G. (1991). Seed-eating by red leaf monkeys (Presbytis rubicunda) in dipterocarp forest of northern Borneo. International Journal of Primatology, 12, 119–144.CrossRefGoogle Scholar
  22. Dearing, M. D., Foley, W. J., & McLean, S. (2005). The influence of plant secondary metabolites on the nutrititional ecology of herbivorous terrestrial vertebrates. Annual Review of Ecology and Evolutionary Systematics, 36, 169–189.CrossRefGoogle Scholar
  23. Di Fiore, A., Link, A., & Campbell, C. J. (2011). The atelines: Behavioral and socioecological diversity in a new world monkey radiation. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 155–188). New York: Oxford University Press.Google Scholar
  24. Dias, L. G., & Strier, K. B. (2003). Effects of group size on ranging patterns in Brachyteles arachnoides hypoxanthus. International Journal of Primatology, 24, 209–221.CrossRefGoogle Scholar
  25. Dunbar, R. I. M. (1988). Primate social systems. Ithaca: Cornell University Press.CrossRefGoogle Scholar
  26. Essau, K. (1977). Anatomy of seed plants (2nd ed.). New York: Mayflower Press.Google Scholar
  27. Fashing, P. J. (2001). Activity and ranging patterns of guerezas in the Kakamega Forest: intergroup variation and implications for intragroup feeding competition. International Journal of Primatology, 22(4), 549–577.Google Scholar
  28. Felton, A. M., Felton, A., Raubenheimer, D., Simpson, S. J., Foley, W. J., Wood, J. T., et al. (2009). Protein content of diets dictates the daily energy intake of a free-ranging primate. Behavioral Ecology, 20, 685–690.CrossRefGoogle Scholar
  29. Gillespie, T. R., & Chapman, C. A. (2001). Determinants of group size in the red colobus monkey (Procolobus badius): an evaluation of the generality of the ecological constraints model. Behavioral Ecology and Sociobiology, 50, 329–338.CrossRefGoogle Scholar
  30. Gregory, T.L. (2011). Socioecology of the Guianan bearded saki, Chiropotes sagulatus Ph.D. dissertation, Kent State University.Google Scholar
  31. Hemson, G., Johnson, P., South, A., Kenward, R., Ripley, R., & MacDonald, D. (2005). Are kernels the mustard? Data from global positioning system (GPS) collars suggests problems for kernel home-range analyses with least-squares cross-validation. Journal of Animal Ecology, 74, 455–463.CrossRefGoogle Scholar
  32. Isbell, L. A. (1991). Contest and scramble competition: patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143–155.CrossRefGoogle Scholar
  33. Janson, C. H. (1988). Intra-specific food competition and primate social structure: a synthesis. Behaviour, 105, 1–17.Google Scholar
  34. Janson, C. H. (1992). Evolutionary ecology of primate social structure. In E. A. Smith & B. Winterhalder (Eds.), Evolutionary ecology and human behavior (pp. 95–130). New York: Aldine.Google Scholar
  35. Janson, C. H., & Goldsmith, M. L. (1995). Predicting group size in primates: foraging costs and predation risks. Behavioral Ecology, 6, 326–336.CrossRefGoogle Scholar
  36. Janzen, D. H. (1971). Seed predation by animals. Annual Review of Ecology and Systematics, 2, 465–492.Google Scholar
  37. Janzen, D. H. (1978). The ecology and evolutionary biology of seed chemistry as relates to seed predation. In J. B. Harborne (Ed.), Biochemical aspects of plant and animal coevolution (pp. 163–206). New York: Academic Press.Google Scholar
  38. Kinzey, W. G. (1992). Dietary and dental adaptations in the Pitheciinae. American Journal of Physical Anthropology, 88(4), 499–514.PubMedCrossRefGoogle Scholar
  39. Kinzey, W. G., & Norconk, M. A. (1993). Physical and chemical properties of fruit and seeds eaten by Pithecia and Chiropotes in Surinam and Venezuela. International Journal of Primatology, 14(2), 207–227.CrossRefGoogle Scholar
  40. Kirkpatrick, R. C., Long, Y. C., Zhong, T., & Xiao, L. (1998). Social organization and range use in the Yunnan snub-nosed monkey (Rhinopithecus bieti). International Journal of Primatology, 19(1), 13–51.CrossRefGoogle Scholar
  41. Koenig, A., Beise, J., Chalise, M. K., & Ganzhorn, J. U. (1998). When females should contest for food-testing hypotheses about resource density, distribution, size, and quality with Hanuman langurs (Presbytis entellus). Behavioral Ecology and Sociobiology, 42, 225–237.CrossRefGoogle Scholar
  42. Lambert, J. E. (2011). Primate nutritional ecology: Feeding biology and diet at ecological and evolutionary scales. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 512–522). New York: Oxford University Press.Google Scholar
  43. Leighton, M., & Leighton, D. R. (1982). The relationship of size and feeding aggregate size to size of food patch: Howler monkeys (Alouatta palliata) feeding in Trichilia cipo fruit trees on Barro Colorado Island. Biotropica, 14, 81–90.CrossRefGoogle Scholar
  44. Milton, K. (1984). The role of food-processing factors in primate food choice. In P. S. Rodman & J. G. H. Cant (Eds.), Adaptations for foraging in nonhuman primates (pp. 249–279). New York: Columbia University Press.Google Scholar
  45. Milton, K. (1998). Physiological ecology of howlers (Alouatta): energetic and digestive considerations and comparison with the Colobinae. International Journal of Primatology, 19, 513–548.CrossRefGoogle Scholar
  46. Milton, K., & May, M. L. (1976). Body weight, diet, and home range area in primates. Nature, 259, 459–462.PubMedCrossRefGoogle Scholar
  47. Norconk, M. A. (1996). Seasonal variation in the diets of white-faced and bearded sakis (Pithecia pithecia and Chiropotes satanus) in Guri Lake, Venezuela. In M. A. Norconk, A. L. Rosenberger, & P. A. Garber (Eds.), Adaptive responses of neotropical primates (pp. 403–426). New York: Plenum Press.CrossRefGoogle Scholar
  48. Norconk, M. A. (2011). Saki, uakaris, and titi monkeys: Behavioral diversity in a radiation of primate seed predators. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 123–138). New York: Oxford University Press.Google Scholar
  49. Norconk, M. A., & Kinzey, W. G. (1994). Challenge of Neotropical frugivory: travel patterns of spider monkeys and bearded sakis. American Journal of Primatology, 34, 171–183.CrossRefGoogle Scholar
  50. Norconk, M. A., & Veres, M. (2011). Physical properties of fruit and seeds ingested by primate seed predators with emphasis on sakis and bearded sakis. The Anatomical Record, 294, 2092–2111.Google Scholar
  51. Norconk, M. A., Grafton, B. W., & Conklin-Brittain, N. L. (1998). Dispersal by neotropical seed predators. American Journal of Primatology, 45, 103–126.PubMedCrossRefGoogle Scholar
  52. Norconk, M. A., Oftedal, O. T., Power, M. L., Jakubasz, M., & Savage, A. (2002). Digesta passage and fiber digestibility in captive white-faced sakis (Pithecia pithecia). American Journal of Primatology, 58, 23–34.PubMedCrossRefGoogle Scholar
  53. Norconk, M. A., Wright, B. W., Conklin-Brittain, N. L., & Vinyard, C. J. (2009). Mechanical and nutritional properties of food as factors in platyrrhine dietary adaptations. In P. A. Garber, A. Estrada, C. Bicca-Marques, E. Heymann, & K. Strier (Eds.), South American primates: Testing new theories in the study of primate behavior, ecology, and conservation (pp. 279–319). New York: Springer.Google Scholar
  54. Oates, J. F. (1994). The natural history of African colobines. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: Their ecology, behavior, and evolution (pp. 75–128). Cambridge: Cambridge University Press.Google Scholar
  55. Peetz, A. (2001). Ecology and social organization of the bearded Saki (Chiropotes satanas chiropotes). Ecotropical Monographs No. 1. Marburg, Germany: Society for Tropical Ecology.Google Scholar
  56. Phillips, K. A. (1995). Resource patch size and flexible foraging in white-face capuchins (Cebus capucinus). International Journal of Primatology, 16, 509–521.CrossRefGoogle Scholar
  57. Pimley, E. R., Bearder, S. K., & Dixson, A. F. (2005). Home range analysis of Perodicticus potto edwardsi and Sciurocheirus cameronensis. International Journal of Primatology, 26, 191–205.CrossRefGoogle Scholar
  58. Pinto, L.P. (2008). Ecologia alimentar do cuxiú-de-nariz-vermelho Chiropotes albinasus (Primates: Pitheciidae) na Floresta Nacional do Tapajós, Pará. Doctoral dissertation, Universidade Estadual de Campinas, Campinas, Brazil.Google Scholar
  59. Righini, N., & Garber, P.A. (2012). Does resource mixing explain why howler monkeys leave a feeding patch? In XXIVth Congress of the International Primatological Society, Cancun, Mexico, August 12–18. Abstract 46.Google Scholar
  60. Robbins, C. T., Fortin, J. K., Rode, K. D., Farley, S. D., Shipley, L. A., & Felicetti, L. A. (2007). Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos, 116(10), 1675–1682.Google Scholar
  61. Rothman, J. M., Chapman, C. A., & Van Soest, P. J. (2012). Methods in primate nutritional ecology: a user’s guide. International Journal of Primatology, 33, 542–566.CrossRefGoogle Scholar
  62. Santos, R. R. (2002). Ecologia de cuxiús (Chiropotes satanas) na Amazonia Oriental: perspectivas para a conservação de populações fragmentadas. Doctoral thesis, Museu Paraense Emílio Goeldi and Universidade Federal do Pará, Belém, Brazil.Google Scholar
  63. Schoener, T. W. (1971). Theory of feeding strategies. Annual Review of Ecology and Systematics, 2, 369–403.CrossRefGoogle Scholar
  64. Seaman, D. E., & Powell, R. A. (1996). An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology, 77, 2075–2085.CrossRefGoogle Scholar
  65. Shaffer, C. A. (2012). Ranging behavior, group cohesiveness, and patch use in northern bearded sakis (Chiropotes sagulatus) in Guyana. Ph.D. dissertation, Washington University in St. Louis.Google Scholar
  66. Shaffer, C. A. (2013a). Feeding ecology of northern bearded sakis (Chiropotes sagulatus) in Guyana. American Journal of Primatology. doi:10.1002/ajp.22134.PubMedGoogle Scholar
  67. Shaffer, C. A. (2013b). GIS analysis of patch use and group cohesiveness of bearded sakis (Chiropotes sagulatus) in the Upper Essequibo Conservation Concession, Guyana. American Journal of Physical Anthropology, 150, 235–246.PubMedCrossRefGoogle Scholar
  68. Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32(6), 523–559.PubMedCrossRefGoogle Scholar
  69. Snaith, T. V., & Chapman, C. A. (2007). Primate group size and interpreting socioecological models: do folivores really play by different rules? Evolutionary Anthropology, 16, 94–106.CrossRefGoogle Scholar
  70. Stevenson, P. R., Quinones, M. J., & Ahumada, J. A. (1998). Effects of fruit patch availability on feeding subgroup size and spacing patterns in four primate species at Tinigua National Park, Colombia. International Journal of Primatology, 19(2), 313–324.CrossRefGoogle Scholar
  71. Sussman, R. W., & Garber, P. A. (2011). Cooperation, collective action, and competition in primate social interactions. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 123–138). New York: Oxford University Press.Google Scholar
  72. Sussman, R. W., Shaffer, C. A., & Guidi, L. (2011). Macaca fascicularis in Mauritius: Implications for macaque–human interactions and for future research on long-tailed macaques. In A. Fuentes, M. D. Gumert, & L. Jones-Engel (Eds.), Ecology and management of long-tailed macaques and their interface with humans (pp. 207–235). Cambridge: Cambridge University Press.Google Scholar
  73. Swedell, L. (2011). African papionins: Diversity of social organization and ecological flexability. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (2nd ed., pp. 241–276). New York: Oxford University Press.Google Scholar
  74. Symington, M. M. (1988). Food competition and foraging party size in the black spider monkey (Ateles paniscus chamek). Behavior, 105, 117–134.CrossRefGoogle Scholar
  75. Teichroeb, J. A., & Sicotte, P. (2009). Test of the ecological-constraints model on ursine colobus monkeys (Colobus vellerosus) in Ghana. American Journal of Primatology, 71, 49–59.PubMedCrossRefGoogle Scholar
  76. ter Steege, H. (1993). Patterns of tropical rain forest in Guyana. Wageningen: The Tropenbos Foundation.Google Scholar
  77. van Roosmalen, M. G. M., Mittermeier, R. A., & Fleagle, J. G. (1988). Diet of the northern bearded saki (Chiropotes satanas chiropotes): a neotropical seed predator. American Journal of Primatology, 14, 11–35.Google Scholar
  78. White, F. J., & Wrangham, R. W. (1988). Feeding competition and patch size in the chimpanzee species Pan paniscus and Pan troglodytes. Behavior, 105, 148–164.CrossRefGoogle Scholar
  79. Worton, B. J. (1987). A review of models of home range for animal movement. Ecological Modeling, 38, 277–298.CrossRefGoogle Scholar
  80. Wrangham, R. W., Gittleman, J. L., & Chapman, C. A. (1993). Constraints on group size in primates and carnivores: population density and day-range as assays of exploitation competition. Behavioral Ecology and Sociobiology, 32, 199–210.CrossRefGoogle Scholar
  81. Yeager, C. P., & Kirkpatrick, R. C. (1998). Asian colobines social structure: ecological and evolutionary constraints. Primates, 39, 147–155.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Anthropology, Sociology and LanguagesUniversity of Missouri–St. LouisSt. LouisUSA

Personalised recommendations