Advertisement

International Journal of Primatology

, Volume 34, Issue 3, pp 500–514 | Cite as

The Effect of Climatic Factors on the Activity Budgets of Barbary Macaques (Macaca sylvanus)

  • Bonaventura MajoloEmail author
  • Richard McFarland
  • Christopher Young
  • Mohamed Qarro
Article

Abstract

Climatic conditions can significantly affect the behavior of animals and constrain their activity or geographic distribution. Barbary macaques (Macaca sylvanus) are one of the few primates that live outside the tropics. Here we analyze if and how the activity budgets of Barbary macaques are affected by climatic variables, i.e., air temperature, relative humidity, rainfall, and snow coverage. We collected scan sampling data on the activity budgets of four groups of macaques living in the Middle Atlas Mountains of Morocco from June 2008 to January 2011. This habitat is characterized by extreme seasonal changes, from cold and snowy winters to hot and dry summers. The activity budgets of the macaques differed across months but not across the time of day (with the exception of time spent feeding). The monkeys spent significantly more time feeding or foraging when there was no snow than when snow coverage was moderate or major. Daily rainfall was positively related to resting time and negatively to time spent moving or in social behavior. Air temperature was negatively related to time spent feeding or foraging. Finally, time spent on social behavior was significantly lower when relative humidity was high. These data indicate that environmental factors significantly affect the time budgets of endangered Barbary macaques, a species that has been little studied in the wild. Our findings support previous studies on temperate primates in showing that snow coverage can have negative consequences on the feeding ecology and survival of these species.

Keywords

Climate Feeding Morocco Resting Thermoregulation 

Notes

Acknowledgments

We thank the Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification of Morocco for research permission. We thank Marina Cords, Paul Garber, Joanna Setchell, and one anonymous reviewer for useful comments on an earlier draft of this manuscript. We also thank Laëtitia Maréchal, Pawel Fedurek, Paolo Piedimonte, Michael Madole, Dave Thomas, Sofia Santos, Maria Thunström, and Tom Smith for assistance in the field. We are grateful to Julia Ostner and Oliver Schülke for their valuable support to this study.

References

  1. Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49, 227–267.PubMedCrossRefGoogle Scholar
  2. Barrett, L., Gaynor, D., Rendall, D., Mitchell, D., & Henzi, S. P. (2004). Habitual cave use and thermoregulation in chacma baboons (Papio hamadryas ursinus). Journal of Human Evolution, 46, 215–222.PubMedCrossRefGoogle Scholar
  3. Bernstein, I. S. (1972). Daily activity cycles and weather influences on a pigtail monkey group. Folia Primatologica, 18, 390–415.CrossRefGoogle Scholar
  4. Bettridge, C., Lehmann, J., & Dunbar, R. I. M. (2010). Trade-offs between time, predation risk and life history, and their implications for biogeography: a systems modelling approach with a primate case study. Ecological Modelling, 221, 777–790.CrossRefGoogle Scholar
  5. Camperio Ciani, A., Palentini, L., Arahou, M., Martinoli, L., Capiluppi, C., & Mouna, M. (2005). Population decline of Macaca sylvanus in the Middle Atlas of Morocco. Biological Conservation, 121, 635–641.CrossRefGoogle Scholar
  6. Campos, F. A., & Fedigan, L. M. (2009). Behavioural adaptations to heat stress and water scarcity in white-faced capuchins (Cebus capucinus) in Santa Rosa National Park, Costa Rica. American Journal of Physical Anthropology, 138, 101–111.PubMedCrossRefGoogle Scholar
  7. Chapman, C. A., & Chapman, L. J. (1991). The foraging itinerary of spider monkeys: when to eat leaves? Folia Primatologica, 56, 162–166.CrossRefGoogle Scholar
  8. Clutton-Brock, T. H., & Harvey, P. H. (1977). Primate ecology and social organisation. Journal of Zoology, 183, 1–39.CrossRefGoogle Scholar
  9. Deag, J. M. (1980). Interactions between males and unweaned Barbary macaques: testing the agonistic buffering hypothesis. Behaviour, 75, 54–81.CrossRefGoogle Scholar
  10. Deag, J. M. (1985). The diurnal patterns of behaviour of the wild Barbary macaque (Macaca sylvanus). Journal of Zoology, 206, 403–413.CrossRefGoogle Scholar
  11. Dunbar, R. I. M. (1992). Time: a hidden constraint on the behavioural ecology of baboons. Behavioral Ecology and Sociobiology, 31, 35–49.CrossRefGoogle Scholar
  12. Dunbar, R. I. M., Korstjens, A. H., & Lehmann, J. (2009). Time as an ecological constraint. Biological Reviews, 84, 413–429.PubMedCrossRefGoogle Scholar
  13. El Alami, A., van Lavieren, E., Rachida, A., & Chait, A. (2012). Differences in activity budgets and diet between semiprovisioned and wild-feeding groups of the endangered Barbary macaque (Macaca sylvanus) in the Central High Atlas Mountains, Morocco. American Journal of Primatology, 74, 210–216.CrossRefGoogle Scholar
  14. Fa, J. E. (1984). Habitat distribution and habitat preference in Barbary macaques (Macaca sylvanus). International Journal of Primatology, 5, 273–286.CrossRefGoogle Scholar
  15. Fa, J. E. (1986). Use of time and resources by provisioned troops of monkeys: Social behaviour, time and energy in the Barbary macaque (Macaca sylvanus L.) at Gibraltar. Contributions to Primatology, 23, 1–377.Google Scholar
  16. Fleagle, J. G. (1999). Primate adaptation and evolution. San Diego: Academic Press.Google Scholar
  17. Fooden, J. (2007). Systematic review of the Barbary macaque, Macaca sylvanus (Linnaeus, 1758). Fieldiana Zoology, 113, 1–60.CrossRefGoogle Scholar
  18. Hanya, G., Ménard, N., Qarro, M., Ibn Tattou, M., Fuse, M., Vallet, et al. (2011). Dietary adaptations of temperate primates: comparisons of Japanese and Barbary macaques. Primates, 52, 187–198.PubMedCrossRefGoogle Scholar
  19. Hetem, R. S., Strauss, W. M., Fick, L. G., Maloney, S. K., Meyer, L. C. R., Shobrak, M., et al. (2012). Does size matter? Comparison of body temperature and activity of free-living Arabian oryx (Oryx leucoryx) and the smaller Arabian sand gazelle (Gazella subgutturosa marica) in the Saudi desert. Journal of Comparative Physiology. B, 182, 437–449.CrossRefGoogle Scholar
  20. Hill, R. A. (2006). Thermal constraints on activity scheduling and habitat choice in baboons. American Journal of Physical Anthropology, 129, 242–249.PubMedCrossRefGoogle Scholar
  21. Hill, R. A., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., Payne, H., et al. (2003). Day length, latitude and behavioural (in)flexibility in baboons (Papio cynocephalus ursinus). Behavioral Ecology and Sociobiology, 53, 278–286.Google Scholar
  22. Hill, R. A., Barrett, L., Gaynor, D., Weingrill, T., Dixon, P., Payne, H., et al. (2004). Day length variation and seasonal analyses of behaviour. South African Journal of Wildlife Research, 34, 39–44.Google Scholar
  23. Isbell, L. A., & Young, C. P. (1993). Social and ecological influences on activity budgets of vervet monkeys, and their implications for group living. Behavioral Ecology and Sociobiology, 32, 377–385.CrossRefGoogle Scholar
  24. IUCN (2012). IUCN Red List of Threatened Species. Version 2012.2. Retrieved from: www.iucnredlist.org. Accessed 24 Nov 2012.
  25. Iwamoto, T., & Dunbar, R. I. M. (1983). Thermoregulation, habitat quality, and the behavioural ecology of gelada baboons. Journal of Animal Ecology, 52, 357–366.CrossRefGoogle Scholar
  26. Korstjens, A. H., Lehmann, J., & Dunbar, R. I. M. (2010). Resting time as an ecological constraint on primate biogeography. Animal Behaviour, 79, 361–374.CrossRefGoogle Scholar
  27. Li, Y., Liu, X., Liao, M., Yang, J., & Stanford, C. B. (2009). Characteristics of a group of Hubei golden snub-nosed monkeys (Rhinopithecus roxellana hubeiensis) before and after major snow storms. American Journal of Primatology, 71, 523–526.PubMedCrossRefGoogle Scholar
  28. Mehlman, P. T. (1989). Comparative density, demography, and ranging behavior of Barbary macaques (Macaca sylvanus) in marginal and prime conifer habitats. International Journal of Primatology, 10, 269–292.CrossRefGoogle Scholar
  29. Ménard, N. (2002). Ecological plasticity of Barbary macaques (Macaca sylvanus). Evolutionary Anthropology, 11, 95–100.CrossRefGoogle Scholar
  30. Ménard, N., & Qarro, M. (1999). Bark stripping and water availability: a comparative study between Moroccan and Algerian Barbary macaques (Macaca sylvanus). Revue d’Ecologie, 54, 123–132.Google Scholar
  31. Ménard, N., & Vallet, D. (1997). Behavioral responses of Barbary macaque (Macaca sylvanus) to variations in environmental conditions in Algeria. American Journal of Primatology, 43, 285–304.PubMedCrossRefGoogle Scholar
  32. Nakayama, Y., Matsuoka, S., & Watanuki, Y. (1999). Feeding rates and energy deficits of juvenile and adult Japanese monkeys in a cool temperate area with snow coverage. Ecological Research, 14, 291–301.CrossRefGoogle Scholar
  33. Ostner, J. (2002). Social thermoregulation in redfronted lemurs (Eulemur fulvus fulvus). Folia Primatologica, 73, 175–180.CrossRefGoogle Scholar
  34. Pinheiro, J. C., & Bates, D. M. (2000). Mixed effects models in S and S-PLUS. New York: Springer.CrossRefGoogle Scholar
  35. Robinson, J. G. (1984). Diurnal variation in foraging and diet in the wedge-capped capuchin Cebus olivaceus. Folia Primatologica, 43, 216–228.CrossRefGoogle Scholar
  36. Sato, H. (2012). Diurnal resting in brown lemurs in a dry deciduous forest, northwestern Madagascar: implications for seasonal thermoregulation. Primates, 53, 255–263.PubMedCrossRefGoogle Scholar
  37. StataCorp. (2011). Stata statistical software: Release 12. Texas: Stata Press.Google Scholar
  38. Stelzner, J. K. (1988). Thermal effects on movement patterns of yellow baboons. Primates, 29, 91–105.CrossRefGoogle Scholar
  39. Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton: Princeton University Press.Google Scholar
  40. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics. Boston: Pearson Education.Google Scholar
  41. Taub, D. M. (1984). A brief historical account of the recent decline in geographic distribution of the Barbary macaque in North Africa. In J. E. Fa (Ed.), The Barbary macaque: A case study in conservation (pp. 71–78). New York: Plenum Press.CrossRefGoogle Scholar
  42. van Doorn, A. C., O’Riain, M. J., & Swedell, L. (2010). The effects of extreme seasonality of climate and day length on the activity budget and diet of semi-commensal chacma baboons (Papio ursinus) in the Cape Peninsula of South Africa. American Journal of Primatology, 72, 104–112.PubMedGoogle Scholar
  43. van Lavieren, E., & Wich, S. A. (2009). Decline of the Barbary macaques Macaca sylvanus in the cedar forest of the Middle Atlas Mountains, Morocco. Oryx, 44, 133–138.CrossRefGoogle Scholar
  44. Ventura, R., Majolo, B., Schino, G., & Hardie, S. (2005). Differential effects of ambient temperature and humidity on allogrooming, self-grooming, and scratching in wild Japanese macaques. American Journal of Physical Anthropology, 126, 453–457.PubMedCrossRefGoogle Scholar
  45. Waters, S. S., Aksissou, M., El Harrad, A., Hobbelink, M. E., & Fa, J. E. (2007). Holding on in the Djebela: Barbary macaque Macaca sylvanus in northern Morocco. Oryx, 41, 106–108.CrossRefGoogle Scholar
  46. Xiang, Z. F., Huo, S., Xiao, W., Quan, R. C., & Grueter, C. C. (2007). Diet and feeding behavior of Rhinopithecus bieti at Xiaochangdu, Tibet: adaptations to a marginal environment. American Journal of Primatology, 69, 1141–1158.PubMedCrossRefGoogle Scholar
  47. Zar, J. H. (1999). Biostatistical analysis. Upper Saddle River: Prentice Hall.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bonaventura Majolo
    • 1
    Email author
  • Richard McFarland
    • 1
    • 2
  • Christopher Young
    • 3
  • Mohamed Qarro
    • 4
  1. 1.School of PsychologyUniversity of LincolnLincolnUK
  2. 2.Brain Function Research Group, School of PhysiologyUniversity of the WitwatersrandJohannesburgSouth Africa
  3. 3.Primate Social Evolution Group, Courant Research Centre Evolution of Social BehaviourGeorg-August University GöttingenGöttingenGermany
  4. 4.École Nationale Forestière d’IngénieursSaléMorocco

Personalised recommendations