International Journal of Primatology

, Volume 34, Issue 3, pp 470–485 | Cite as

Arthropod Predation by a Specialist Seed Predator, the Golden-backed Uacari (Cacajao melanocephalus ouakary, Pitheciidae) in Brazilian Amazonia

  • A. A. Barnett
  • B. Ronchi-Teles
  • T. Almeida
  • A. Deveny
  • V. Schiel-Baracuhy
  • W. Souza-Silva
  • W. Spironello
  • C. Ross
  • A. MacLarnon
Article

Abstract

Morphological adaptations related to food processing generally reflect those elements of the diet that represent the greatest biomechanical challenge or that numerically dominate the diet. However, in periods of the annual cycle when the availability of such foods is low, items to which a species has low apparent morphological adaptation may be included in the diet. Here we test the responses of a diet-specialist primate to limitations in the supply of the resource it is specialized to exploit. Uacaris are primarily predators of immature seeds, in seasonally flooded forests in Amazonian Brazil, and have dental specializations to open hard-shelled fruits. We investigated the importance of arthropods in the diet of golden-backed uacaris (Cacajao melanocephalus ouakary), examining their seasonal importance in the uacari diet, and the ways C. m. ouakary used to access them. Using scan and ad libitum sampling of feeding and phenology from botanical study plots to assess fruit availability, we conducted an 18-mo study in Jaú National Park, Amazonas State, Brazil. We recorded arthropod predation 298 times, with Cacajao melanocephalus ouakary feeding on 26 invertebrate taxa in ≥11 families and 9 different orders. Uacaris extracted wood-boring beetles dentally from rotting wood and smaller larvae from twigs, stems, and petioles, but this food class did not predominate. This food class (encapsulated foods) constituted 23.4 % of the arthropod records. The majority of arthropod food items were either manually removed from substrates (ants, beetle larvae, caterpillars, fulgorid bugs, grasshoppers, mayflies, spiders, termites, wasps, and a whip-scorpion) or plucked from the air (volant Lepidoptera). Uacaris appeared to avoid toxic caterpillars. Insectivory was most frequent when fruit and seeds were least available. Arthropods seem to be seasonally important to this primate, supplementing or making up for shortfalls in the hard fruits and immature seeds for which uacaris have highly developed dental, and possibly intestinal, adaptations.

Keywords

Insectivory Neotropics Primates 

References

  1. Ackery, P. R., de Jong, R., & Vane-Wright, R. I. (1999). The butterflies: Hedyloidea, Hesperioidea and Papilionoidae. In N. P. Kristensen (Ed.), andbook of zoology: A natural history of the phyla of the animal kingdom. Vol. IV: Arthropoda: Insecta, Part 35: Lepidoptera, moths and butterflies. Vol. 1: Evolution, systematics, and biogeography (pp. 263–300) (Vol. 1). Berlin: Walter de Gruyter.Google Scholar
  2. Altmann, J. (1974). Observational study of behaviour: sampling methods. Behaviour, 49, 227–267.PubMedCrossRefGoogle Scholar
  3. Aquino, R., & Encarnation, F. (1999). Observaciones preliminares sobre la dieta de Cacajao calvus ucayalii en el nor-oriente Peruano. Neotropical Primates, 7, 1–5.Google Scholar
  4. Ayres, J. M. (1986). Uakaris and Amazonian flooded forest. Ph.D. dissertation, University of Cambridge.Google Scholar
  5. Ayres, J. M., & Nessimian, J. L. (1982). Evidence for insectivory in Chiropotes satanas. Primates, 23, 458–459.CrossRefGoogle Scholar
  6. Barnett, A. A. (2005). Cacajao melanocephalus. Mammalian Species, 776, 1–6.Google Scholar
  7. Barnett, A. A. (2010). Diet, habitat use and conservation ecology of the golden-backed uacari, Cacajao melanocephalus ouakary, in Jaú National Park, Amazonian Brazil. PhD thesis, Roehampton University, London, UK. Available at: http://roehampton.openrepository.com/roehampton/
  8. Barnett, A. A., & Brandon-Jones, D. (1997). The ecology, biogeography and conservation of the uacaris, Cacajao (Pitheciinae). Folia Primatologica, 68, 223–235.CrossRefGoogle Scholar
  9. Barnett, A. A., de Castillo, C. V., Shapley, R. L., & Anacacio, A. (2005). Diet, habitat selection and natural history of Cacajao melanocephalus ouakary in Jaú National Park, Brazil. International Journal of Primatology, 26, 949–969.CrossRefGoogle Scholar
  10. Barnett, A. A., Boyle, S., Pinto, L., Lourenço, W. C., Almeida, T., Sousa Silva, W., et al. (2012). Primary seed dispersal by three Neotropical seed-predators (Cacajao melanocephalus, Chiropotes chiropotes and Chiropotes albinasus). Journal of Tropical Ecology, 28, 543–555.CrossRefGoogle Scholar
  11. Barnett, A. A., Pinto, L., Bicca-Marques, J. C., Ferrari, S. F., Gordo, M., Lopes, M. L., et al. (2012). Proposal for the common names for species of Chiropotes (Pitheciinae: Primates). Zootaxa, 3507, 79–83.Google Scholar
  12. Barnett, A. A., Schiel, V., Deveny, A., Valsko, J., Spironello, W., & Ross, C. (2011). Predation on cacajao ouakary and cebus albifrons (Primates: Platyrrhini) by harpy eagles. Mammalia 75, 169–172.Google Scholar
  13. Barnett, A. A., Shaw, P., MacLarnon, A., & Ross, C. (2012). Sleeping site selection by golden-backed uacaris, Cacajao melanocephalus ouakary (Pitheciidae), in Amazonian flooded forests. Primates, 5, 273–285.CrossRefGoogle Scholar
  14. Borges, S., Iwanaga, S., Durigan, C. C., & Pinheiro, M. R. (2004). Janelas para a Biodiversidade no Parque Nacional do Jaú: Uma estratégia para o estudo da biodiversidade na Amazônia. Manaus: WWF-FVA-IBAMA.Google Scholar
  15. Boubli, J-P. (1997). Ecology of the black uakari monkey, Cacajao melanocephalus melanocephalus, in Pico da Neblina National Park, Brazil. Ph.D. dissertation, University of California, Berkeley.Google Scholar
  16. Boubli, J.-P., da Silva, M. N. F., Amadou, M. V., Hrbeck, T., Pontual, F. B., & Farias, I. P. (2008). A taxonomic reassessment of Cacajao melanocephalus Humboldt (1811), with the description of two new species. International Journal of Primatology, 29, 723–741.CrossRefGoogle Scholar
  17. Bowler, M. (2007). The ecology and conservation of the red uakari monkey on the Yavari River, Peru. Ph.D. dissertation, University of Kent, Canterbury.Google Scholar
  18. Bowler, M., & Bodmer, R. (2009). Social behavior in fission–fusion groups of red uakari monkeys (Cacajao calvus ucayalii). American Journal of Primatology, 71, 976–987.PubMedCrossRefGoogle Scholar
  19. Bowler, M., & Bodmer, R. (2011). Diet and food choice in Peruvian red uakaris (Cacajao calvus ucayalii) selective or opportunistic seed predation? International Journal of Primatology, 32, 1109–1122.CrossRefGoogle Scholar
  20. Chapman, C. A., Chapman, L. J., Wangham, R., Hunt, K., Gebo, D., & Gardner, L. (1992). Estimators of fruit abundance of tropical trees. Biotropica, 24, 527–531.CrossRefGoogle Scholar
  21. Chivers, D. J. (1969). On the daily behaviour and spacing of howling monkey groups. Folia Primatologica, 10, 48–102.CrossRefGoogle Scholar
  22. Costa, J. T., Gotzek, D. A., & Janzen, D. H. (2003). Late-instar shift in foraging strategy and trail-pheromone use by caterpillars of the Neotropical moth Arsenura armida (Cramer) (Saturniidae: Arsenurinae). Journal of the Lepidopterists’ Society, 57, 220–229.Google Scholar
  23. Deane, A. (2012). Platyrrhine incisors and diet. American Journal of Physical Anthropology, 148, 249–261.PubMedCrossRefGoogle Scholar
  24. Defler, T. R. (1979). On the ecology and behavior of Cebus albifrons in eastern Colombia: I. Ecology. Primates, 20, 475–490.CrossRefGoogle Scholar
  25. Deml, R., & Dettner, K. (1995). “Balloon hairs” of gipsy moth larvae (Lep., Lymantridae): morphology and comparative chemistry. Comparative Biochemistry and Physiology, 112B, 673–681.Google Scholar
  26. Dominy, N. J., Lucas, P. W., Osorio, D., & Yamashita, N. (2001). The sensory ecology of primate food perception. Evolutionary Anthropology, 10, 171–186.CrossRefGoogle Scholar
  27. Dufour, D. L. (1987). Insects as food: a case study from the northwest Amazon. American Anthropologist, 89, 383–397.CrossRefGoogle Scholar
  28. Erickson, C. J. (1994). Tap-scanning and extractive foraging in aye-ayes, Daubentonia madagascariensis. Folia Primatologica, 62, 125–135.CrossRefGoogle Scholar
  29. Farris, Z. J., Morelli, T. L., Sefczek, T., & Wright, P. C. (2011). Comparing aye-aye (Daubentonia madagascariensis) presence and distribution between degraded and non-degraded forest within Ranomafana National Park, Madagascar. Folia Primatologica, 82, 94–106.CrossRefGoogle Scholar
  30. Ferrari, S. F. (1988). The behaviour and ecology of the buffy-headed marmoset, Callithrix flaviceps (O. Thomas, 1903). Ph.D. thesis, University College, London.Google Scholar
  31. Ferrari, S. F., Guedes, P. G., Figueiredo, W. M. B., & Barnett, A. A. (2010). Re-evaluation of the nomenclature of the black-faced uacaris (Cacajao melanocephalus group, sensu Hershkovitz, 1987). Presentation no. 350, Abstracts, XXIIth Congress, International Primatological Society, Kyoto, Japan, September 12–18.Google Scholar
  32. Ferreira, L. V. (1997). Effects of the duration of flooding on species richness and floristic composition in three hectares in the Jaú National Park in floodplain forests in central Amazonia. Biodiversity and Conservation, 6, 1353–1363.CrossRefGoogle Scholar
  33. Figueiredo, W. M. B. (2006). A filogeografia molecular dos primatas da tribo Pitheciini (gêneros Pithecia, Chiropotes e Cacajao): Implicações para o estudo da biogeografia histórica da Amazônia. Ph.D. dissertation, Universidade Federal do Pará, Belém.Google Scholar
  34. Fragaszy, D. M., Visalbeghi, E., & Fedigan, L. M. (2004). The complete capuchin: The biology of the genus Cebus. Cambridge: Cambridge University Press.Google Scholar
  35. Frazão, E. (1991). Insectivory in free-ranging bearded saki (Chiropotes satanas chiropotes). Primates, 32, 243–245.CrossRefGoogle Scholar
  36. Frone, D., & Pfander, H. J. (2004). Poisonous plants: A handbook for doctors, pharmacists, toxicologists. Tallahassee: Manson Publishing.Google Scholar
  37. Galetti, M., & Pedroni, F. (1994). Seasonal diet of capuchin monkey (Cebus apella) in a semi-deciduous forest in south-east Brazil. Journal of Tropical Ecology, 10, 27–39.CrossRefGoogle Scholar
  38. Gaulin, S. J. C. (1979). A Jarman/Bell model of primate feeding niches. Human Ecology, 7, 1–20.CrossRefGoogle Scholar
  39. Gentry, A. H. (1993). A field guide to the families and genera of woody plants of northwest South America (Colombia, Ecuador, Peru) with supplementary notes. Chicago: University of Chicago Press.Google Scholar
  40. Gómez-Posada, C. (2012). Dieta y comportamiento alimentario de un grupo de mico maicero Cebus apella de acuerdo a la variación en la oferta de frutos y artrópodos, en la Amazonía colombiana. Acta Amazonica, 42, 363–372.CrossRefGoogle Scholar
  41. Harrison-Levine, A. L. (2003). Insect predation techniques suggest predator-sensitive foraging in a group of white-faced sakis (Pithecia pithecia). [Abstract]. American Journal of Primatology, 60(Supplement 1), 66.Google Scholar
  42. Hay-Roe, M. M., & Nation, J. (2007). Spectrum of cyanide toxicity and allocation in Heliconius erato and Passiflora host plants. Journal of Chemical Ecology, 33, 319–329.PubMedCrossRefGoogle Scholar
  43. Hershkovitz, P. (1987). Uacaris. New World monkeys of the genus Cacajao (Cebidae, Platyrrhini): A preliminary taxonomic review with a description of a new sub-species. American Journal of Primatology, 12, 1–53.CrossRefGoogle Scholar
  44. Heymann, E., & Bartecki, U. (1990). A young saki monkey, Pithecia hirsuta, feeding on ants, Cephalotes atratus. Folia Primatologica, 55, 181–184.CrossRefGoogle Scholar
  45. Isbell, L. A. (1998). Diet for a small primate: insectivory and gummivory in the (large) patas monkey (Erythrocebus patas pyrrhonotus). American Journal of Primatology, 45, 381–398.PubMedCrossRefGoogle Scholar
  46. Izawa, K. (1979). Foods and feeding behavior of wild black-capped capuchin (Cebus apella). Primates, 20, 57–76.CrossRefGoogle Scholar
  47. Janson, C. H. (1988). Intra-specific food competition and primate social structure: a synthesis. Behaviour, 105, 1–17.CrossRefGoogle Scholar
  48. Janson, C. H., & Boinski, S. (1992). Morphological and behavioral adaptations for foraging in generalist primates: the case of the cebines. American Journal of Physical Anthropology, 88, 483–498.PubMedCrossRefGoogle Scholar
  49. Jouventin, P., Pasteur, G., & Cambefort, J. P. (1977). Observational learning of baboons and avoidance of mimics: exploratory tests. Evolution, 31, 214–218.CrossRefGoogle Scholar
  50. Karban, R., & Myers, J. H. (1989). Induced plant responses to herbivory. Annual Review of Ecology and Systematics, 20, 331–348.CrossRefGoogle Scholar
  51. Kay, R. F., & Simons, E. L. (1980). The ecology of Oligocene African Anthropoidea. International Journal of Primatology, 1, 21–37.CrossRefGoogle Scholar
  52. Kay, R. F., Meldrum, D. J., & Takai, M. (2013). Pitheciidae and other platyrrhine seed predators. In L. M. Veiga, A. A. Barnett, S. F. Ferrari, & M. A. Norconk (Eds.), Evolutionary biology and conservation of titis, sakis and uacaris (pp. 3–12). Cambridge: Cambridge University Press.Google Scholar
  53. Kinzey, W. G. (1992). Dietary and dental adaptations in the Pitheciinae. American Journal of Physical Anthropology, 88, 499–514.PubMedCrossRefGoogle Scholar
  54. Kinzey, W. G., & Norconk, M. A. (1993). Physical and chemical properties of fruit and seeds eaten by Pithecia and Chiropotes in Surinam and Venezuela. International Journal of Primatology, 14, 207–227.CrossRefGoogle Scholar
  55. Kubitzki, K., & Ziburski, A. (1994). Seed dispersal in flood plain forests of Amazonia. Biotropica, 26, 30–43.CrossRefGoogle Scholar
  56. Link, A. (2003). Insect-eating by spider monkeys. Neotropical Primates, 11, 104–107.Google Scholar
  57. MacLarnon, A. M., Chivers, D. J., & Martin, R. D. (1986). Gastro-intestinal allometry in primates and other mammals, including new species. In J. G. Else & P. C. Lee (Eds.), Primate ecology and conservation (pp. 75–85). New York: Cambridge University Press.Google Scholar
  58. McGrew, W. C. (2001). The other faunivory: Primate insectivory and early human diet. In C. Stanford & H. Bunn (Eds.), The early human diet: The role of meat (pp. 160–178). Oxford: Oxford University Press.Google Scholar
  59. Melin, A. D., Fedigan, L. M., Hiramatsu, C., Sendall, C. L., & Kamamura, S. (2007). Effects of colour vision phenotype on insect capture by a free-ranging population of white-faced capuchins, Cebus capucinus. Animal Behaviour, 73, 205–214.CrossRefGoogle Scholar
  60. Mittermeier, R. A., Konstant, W. R., Ginsberg, H. M. G., Van Roosmalen, M., & Cordeiro da Silva, E., Jr. (1983). Further evidence of insect consumption in the bearded saki monkey, Chiropotes satanas chiropotes. Primates, 24, 602–605.CrossRefGoogle Scholar
  61. Niehuis, O., Yen, S.-H., Naumann, C. M., & Misoff, B. (2006). Higher phylogeny of zygaenid moths (Insecta: Lepidoptera) inferred from nuclear and mitochondrial sequence data and the evolution of larval cuticular cavities for chemical defense. Molecular Phylogenetics and Evolution, 39, 812–829.PubMedCrossRefGoogle Scholar
  62. Norconk, M. A. (2011). Sakis, uakaris, and titi monkeys: Behavioral diversity in a radiation of primate seed predators. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, S. K. Bearder, & R. M. Stumpf (Eds.), Primates in perspective (pp. 122–139). New York: Oxford University Press.Google Scholar
  63. Ômura, H., & Honda, K. (2011). Pungent odor of the adult skipper butterfly Erynnis montanus (Lepidoptera: Herpseriidae). Applied Entomology and Zoology, 46, 281–286.CrossRefGoogle Scholar
  64. Owen, D. (1980). Camouflage and mimicry. Chicago: University of Chicago Press.Google Scholar
  65. Paré, P. W., & Tumlinson, J. (1999). Plant volatiles as a defense against insect herbivores. Plant Physiology, 121, 325–332.PubMedCrossRefGoogle Scholar
  66. Parolin, P., De Simone, O., Haase, K., Waldhoff, D., Rottenberger, S., Kuhn, U., et al. (2004). Central Amazonian floodplain forests: tree adaptations in a pulsing system. The Botanical Review, 70, 357–380.CrossRefGoogle Scholar
  67. Peetz, A. (2001). Ecology and socil organization of the bearded saki chiropotes satanas chiropotes (Primates: Pitheciinae) in Venezuela. Ecotropica Monographs, 1, 1–70.Google Scholar
  68. Prance, G. T. (1979). Notes on the vegetation types of Amazonia III – the terminology of Amazonian forest types subject to inundation. Brittonia, 31, 26–38.CrossRefGoogle Scholar
  69. Raylor, L. S., & Taylor, L. (2006). Social behavior in Amblypygids, and a reassessment of arachnid social patterns. Journal of Arachnology, 34, 399–421.CrossRefGoogle Scholar
  70. Redford, K. H., Bouchardet da Fonseca, G. A., & Lacher, T. E., Jr. (1984). The relationship between frugivory and insectivory in primates. Primates, 25, 433–440.CrossRefGoogle Scholar
  71. Ribeiro, S. J. E. L., Hopkins, M. J. G., Vincenti, A., Sothers, C. A., Costa, S. M. A., De Brito, J. M., et al. (1999). Flora da Reserva Ducke: Guia de identificação das plantas vasculares de uma floresta de terra firme na Amazonia Central. Manaus: DFID-Instituto Nacional de Pesquisas da Amazônia.Google Scholar
  72. Robbins, M. M., Nkurunungi, J. B., & McNeilage, A. (2006). Variability of the feeding ecology of eastern gorillas. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates: Ecological, physical and behavioral aspects (pp. 25–47). New York: Cambridge University Press.Google Scholar
  73. Rosenberger, A. L. (1992). Evolution of feeding niches in New World monkeys. American Journal of Physical Anthropology, 88, 525–562.PubMedCrossRefGoogle Scholar
  74. Roth, L. M., & Eisner, T. (1962). Chemical defenses of arthropods. Annual Review of Entomology, 7, 107–136.CrossRefGoogle Scholar
  75. Rothschild, M., Reichstein, T., Von Euw, J., Aplin, R., & Harman, R. R. M. (1970). Toxic lepidoptera. Toxicon, 8, 293–299.PubMedCrossRefGoogle Scholar
  76. Srivastava, A. (1991). Insectivory and its significance in langur diets. Primates, 32, 237–241.CrossRefGoogle Scholar
  77. Sterling, E. J. (1994). Aye-ayes: specialists on structurally defended resources. Folia Primatologica, 62, 142–154.CrossRefGoogle Scholar
  78. Tashiro, Y. (2006). Frequent insectivory by two guenons (Cercopithecus lhoesti and Cercopithecus mitis) in the Kalinzu Forest, Uganda. Primates, 47, 170–173.PubMedCrossRefGoogle Scholar
  79. Thorington, R. W. (1967). Feeding and activity of Cebus and Saimiri in a Colombian forest. In Progress in Primatology. Proceedings of the First International Congress of Primatology (pp. 180–184). Stuttgart: Fischer Verlag.Google Scholar
  80. Veiga, L. M. (2006). Ecologia e comportamento do cuxiú-preto (Chiropotes satanus) na paisagem fragmentada da Amazônia Oriental. Ph.D. dissertation, Universidade Federal do Pará, Belém.Google Scholar
  81. Veiga, L. M., & Ferrari, S. F. (2006). Predation of arthropods by southern bearded sakis (Chiropotes satanas) in eastern Brazilian Amazonia. American Journal of Primatology, 68, 209–215.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • A. A. Barnett
    • 1
    • 2
  • B. Ronchi-Teles
    • 3
  • T. Almeida
    • 4
  • A. Deveny
    • 5
  • V. Schiel-Baracuhy
    • 6
  • W. Souza-Silva
    • 7
  • W. Spironello
    • 2
  • C. Ross
    • 1
  • A. MacLarnon
    • 1
  1. 1.Centre for Research in Evolutionary and Ecological Anthropology, School of Life SciencesUniversity of RoehamptonLondonUK
  2. 2.Coordenação de BiodiversidadeInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  3. 3.Coordenação de Pesquisas em EntomologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  4. 4.Laboratório de HerpetologiaUniversidade Federal do Matto GrossoBoa EsperançaBrazil
  5. 5.School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  6. 6.Departamento de Sistemática e EcologiaUniversidade Federal de ParaíbaJoão PessoaBrazil
  7. 7.Instituto de Ciências Exatas e TecnologiaUniversidade Federal do AmazonasItacoitiaraBrazil

Personalised recommendations