International Journal of Primatology

, Volume 34, Issue 2, pp 246–259 | Cite as

Travel Time Predicts Fecal Glucocorticoid Levels in Free-Ranging Howlers (Alouatta palliata)

  • Jacob C. DunnEmail author
  • Jurgi Cristóbal-Azkarate
  • Björn Schulte-Herbrüggen
  • Roberto Chavira
  • Joaquím J. Veà


Environmental stressors impact physiology in many animal species. Accordingly, the monitoring of fecal glucocorticoid metabolites (fGCM) has been increasingly used to evaluate the physiological costs of habitat disturbance on wild animal populations, providing a powerful tool for conservation and management. Several studies have suggested that primates in forest fragments have higher fGCM levels than those in continuous forests, yet the proximate causes of fGCM variation remain to be identified. In previous studies of Mexican howlers (Alouatta palliata mexicana) in Los Tuxtlas, Mexico, we found that individuals living in a smaller and more disturbed forest fragment consumed significantly less fruit and had a significantly higher feeding effort than those living in a bigger, more conserved forest fragment. Here, we aimed to examine the effects of fruit consumption and travel time on fGCM levels in the same two groups of howlers, during three sampling sessions that differed markedly in fruit availability. We found that fGCM levels (N = 202 fecal samples) were higher in the howler group living in the smaller forest fragment and varied seasonally in both focal groups, being lowest when fruit consumption was highest. However, our results suggest that travel time is the main factor predicting fGCM levels in howlers, and that although fruit consumption may be negatively related to fGCM levels, this relationship is probably mediated by the strong effect that fruit consumption has on travel time. Our results provide important insight into the proximate causes of fGCM variation in primates in fragments and highlight the potential conservation significance of studies showing that habitat loss and transformation can lead to increases in travel time in wild primates.


Activity Alouatta palliata mexicana Diet Fecal glucocorticoids Forest Fragmentation Fruit Howler Metabolic stress 



We are thank L. Mendoza and B. Gomez for their help in the field; G. García-Lopez, R. Valenzuela, L. Boeck, and E. O. Ameca for their assistance in the laboratory; C. McOwen for statistical advice; C. Huber and the Palacios family for access to their land; and R. Coates for logistical support. We also thank the Fundación BBVA, which provided a studentship for J. Dunn and financial support for the project and E. Rodríguez-Luna and the Universidad Veracruzana for the use of their facilities. Finally, we thank three anonymous reviewers and the Associate Editor, Oliver Schülke, for their very helpful and constructive comments on a previous version of this manuscript.

Supplementary material

10764_2013_9657_MOESM1_ESM.docx (23 kb)
ESM 1 (DOCX 22 kb)


  1. Abbott, D. H., Keverne, E. B., Bercovitch, F. B., Shively, C. A., Mendoza, S. P., Saltzman, W., Snowdon, C. T., Ziegler, T. E., Banjevic, M., Garland, T., & Sapolsky, R. M. (2003). Are subordinates always stressed? A comparative analysis of rank differences in cortisol levels among primates. Hormones and Behavior, 43, 67–82.PubMedCrossRefGoogle Scholar
  2. Aguilar-Cucurachi, M. S., Dias, P. A., Rangel-Negrín, A., Chavira, R., Boeck, L., & Canales-Espinosa, D. (2010). Preliminary evidence of accumulation of stress during translocation in howlers. American Journal of Primatology, 71, 1–6.Google Scholar
  3. Arroyo-Rodríguez, V., Mandujano, S., & Benítez-Malvido, J. (2008). Landscape attributes affecting patch occupancy by howler monkeys (Alouatta palliata mexicana) in fragmented landscapes at Los Tuxtlas, Mexico. American Journal of Primatology, 70, 69–77.PubMedCrossRefGoogle Scholar
  4. Asensio, N., Arroyo-Rodríguez, V., Dunn, J. C., & Cristóbal-Azkarate, J. (2009). Conservation value of landscape supplementation for howler monkeys living in forest patches. Biotropica, 41, 768–773.CrossRefGoogle Scholar
  5. Asensio, N., Cristóbal-Azkarate, J., Dias, P. A. D., Vea-Baro, J. J., & Rodríguez-Luna, E. (2007). Foraging habits of Alouatta palliata mexicana in three forest fragments. Folia Primatologica, 78, 141–153.CrossRefGoogle Scholar
  6. Beehner, J. C., & McCann, C. (2008). Seasonal and altitudinal effects on glucocorticoid metabolites in a wild primate (Theropithecus gelada). Physiology & Behavior, 95, 508–514.CrossRefGoogle Scholar
  7. Behie, A. M., Pavelka, M. S., & Chapman, C. A. (2010). Sources of variation in faecal cortisol levels in howler monkeys in Belize. American Journal of Primatology, 72, 600–606.PubMedGoogle Scholar
  8. Bonier, F., Martin, P. R., Moore, I. T., & Wingfield, J. C. (2009). Do baseline glucocorticoids predict fitness? TREE, 24, 634–642.PubMedGoogle Scholar
  9. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer.Google Scholar
  10. Busch, D. S., & Hayward, L. S. (2009). Stress in a conservation context: A discussion of glucocorticoid actions and how levels change with conservation-relevant variables. Biological Conservation, 12, 2844–2853.CrossRefGoogle Scholar
  11. Carnegie, S., Fedigan, L. M., & Ziegler, T. E. (2011). Social and environmental factors affecting fecal glucocorticoids in wild, female white-faced capuchins (Cebus capucinus). American Journal of Primatology, 869, 861–869.CrossRefGoogle Scholar
  12. Cavigelli, S. A. (1999). Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Animal Behaviour, 57, 935–944.PubMedCrossRefGoogle Scholar
  13. Champoux, M., Zanker, D., & Levine, S. (1993). Food search demand effort effects on behavior and cortisol in adult female squirrel monkeys. Physiology and Behavior, 54, 1091–1097.Google Scholar
  14. Chapman, C. A., Wassermann, M. D., Gillespie, T. R., Speirs, M. L., Lawes, M. J., Saj, T. L., & Ziegler, T. E. (2006). Do food availability, parasitism, and stress have synergistic effects on red colobus populations living in forest fragments? American Journal of Physical Anthropology, 131, 525–534.PubMedCrossRefGoogle Scholar
  15. Cristóbal-Azkarate, J., Chavira, R., Boeck, L., Rodríguez-Luna, R., & Veà, J. J. (2007). Glucocorticoid levels in free ranging resident howlers: A study of coping strategies. American Journal of Primatology, 69, 1–11.Google Scholar
  16. Cristóbal-Azkarate, J., Domingo-Balcells, C., Dunn, J. C., & Vea-Baro, J. (2011). Evolución demográfica de monos aulladores en fragmentos de selva en Los Tuxtlas. In P. A. Dias, A. R. Negrin, & D. Canales (Eds.), La conservación de los primates en México (pp. 27–43). Veracruz: Consejo Veracruzano de Investigación Científica y Desarrollo Tecnológico.Google Scholar
  17. Cristóbal-Azkarate, J., Veà, J. J., Asensio, N., & Rodríguez-Luna, E. (2005). Biogeographical and floristic predictors of the presence and abundance of howler monkeys (Alouatta palliata mexicana) in the rainforest fragments of Los Tuxtlas, Mexico. American Journal of Primatology, 67, 209–222.PubMedCrossRefGoogle Scholar
  18. Crockett, C., & Rudran, R. (1987). Red howler monkey birth data I: Seasonal variation. American Journal of Primatology, 13, 347–368.CrossRefGoogle Scholar
  19. Cuarón, A. D., Shedden, A., Rodríguez-Luna, E., de Grammont, P. C., & Link, A. (2008). Alouatta palliata ssp. mexicana. In 2008 IUCN Red List of Threatened Species. Retrieved from: (Accessed February 4, 2012).
  20. Dirzo, R., & Garcia, M. C. (1992). Rates of deforestation in Los Tuxtlas, a neotropical area in southeast Mexico. Conservation Biology, 6, 85–94.CrossRefGoogle Scholar
  21. Domingo-Balcells, C., & Vea-Baro, J. (2009). Developmental stages in the howler monkey, subspecies Alouatta palliata mexicana: A new classification using age-sex categories. Neotropical Primates, 16, 1–8.CrossRefGoogle Scholar
  22. Donati, G., Kesch, K., Ndremifidy, K., Schmidt, S. L., Ramanamanjato, J.-B., Borgognini-Tarli, S. M., & Ganzhorn, J. U. (2011). Better few than hungry: Flexible feeding ecology of collared lemurs Eulemur collaris in littoral forest fragments. PloS One, 6(5), e19807. doi: 10.1371/journal.pone.0019807.PubMedCrossRefGoogle Scholar
  23. Dunn, J. C., Asensio, N., Arroyo-Rodríguez, V., Schnitzer, S., & Cristóbal-Azkarate, J. (2012). The ranging costs of a fallback food: liana consumption supplements diet but increases foraging effort in howler monkeys. Biotropica. doi: 10.1111/j.1744-7429.2012.00856.x.
  24. Dunn, J. C., Cristóbal-Azkarate, J., & Veà, J. (2009). Differences in diet and activity pattern between two groups of Alouatta palliata associated with the availability of big trees and fruit of top food taxa. American Journal of Primatology, 71, 654–662.PubMedCrossRefGoogle Scholar
  25. Dunn, J. C., Cristóbal-Azkarate, J., & Veà, J. (2010). Seasonal variations in the diet and feeding effort of two groups of howler monkeys in different sized forest fragments. International Journal of Primatology, 31, 887–903.CrossRefGoogle Scholar
  26. Engh, A., Beehner, J. C., Bergman, T., Whitten, P., Hoffmeier, R. R., Seyfarth, R. M., & Cheney, D. L. (2006). Female hierarchy instability, male immigration and infanticide increase glucocorticoid levels in female chacma baboons. Animal Behaviour, 71, 1227–1237.CrossRefGoogle Scholar
  27. Estrada, A., & Coates-Estrada, R. (1988). Tropical rain forest conversion and perspectives in the conservation of wild primates (Alouatta and Ateles) in Mexico. International Journal of Primatology, 14, 315–327.CrossRefGoogle Scholar
  28. Foerster, S., Cords, M., & Monfort, S. L. (2012). Seasonal energetic stress in a tropical forest primate: Proximate causes and evolutionary implications. PLoS One, 7, e50108.PubMedCrossRefGoogle Scholar
  29. Foerster, S., & Monfort, S. L. (2010). Fecal glucocorticoids as indicators of metabolic stress in female Sykes' monkeys (Cercopithecus mitis albogularis). Hormones and Behavior, 58, 685–697.PubMedCrossRefGoogle Scholar
  30. Gesquiere, L. R., Khan, M., Shek, L., Wango, T. L., Wango, E. O., Alberts, S. C., & Altmann, J. (2008). Coping with a challenging environment: Effects of seasonal variability and reproductive status on glucocorticoid concentrations of female baboons (Papio cynocephalus). Hormones and Behavior, 54, 410–416.PubMedCrossRefGoogle Scholar
  31. Gesquiere, L. R., Learn, N. H., Simao, M. C. M., Onyango, P. O., Alberts, S. C., & Altmann, J. (2011a). Life at the top: Rank and stress in wild male baboons. Science, 333, 357–360.PubMedCrossRefGoogle Scholar
  32. Gesquiere, L. R., Onyango, P. O., Alberts, S. C., & Altmann, J. (2011b). Endocrinology of year-round reproduction in a highly seasonal habitat: Environmental variability in testosterone and glucocorticoids in baboon males. American Journal of Physical Anthropology, 176, 169–176.CrossRefGoogle Scholar
  33. Girard, I., & Garland, T. (2002). Plasma corticosterone response to acute and chronic voluntary exercise in female house mice. Journal of Applied Physiology, 92, 1553–1561.PubMedGoogle Scholar
  34. Glander, K. (1980). Reproduction and population growth in free-ranging howler monkeys. American Journal of Physical Anthropology, 53, 25–36.PubMedCrossRefGoogle Scholar
  35. Gonzalez-Zamora, A., Arroyo-Rodriguez, V., Chaves, O., Sanchez-Lopez, S., Aureli, F., & Stoner, K. (2011). Influence of climatic variables, forest type, and condition on activity patterns of Geoffroyi’s spider monkeys throughout Mesoamerica. American Journal of Primatology, 73, 1189–1198.PubMedCrossRefGoogle Scholar
  36. Guevara, S., Laborde, J., & Sánchez-Rios, G. (2004). Los Tuxtlas: El paisaje de la sierra. Xalapa: Instituto de Ecología, A.C./European Union.Google Scholar
  37. Hardus, M. E., Lameira, A. R., Menken, S. B. J., & Wich, S. A. (2012). Effects of logging on orangutan behavior. Biological Conservation, 146, 177–187.CrossRefGoogle Scholar
  38. Hunt, K. E., & Wasser, S. K. (2003). Effect of long-term preservation methods on fecal glucocorticoid concentrations of grizzly bear and African elephant. Physiological and Biochemical Zoology, 76, 918–928.PubMedCrossRefGoogle Scholar
  39. Jaimez, N., Bribiescas, R. G., Aronsen, G. P., Anestis, S., & Watts, D. P. (2012). Urinary cortisol levels of gray-cheeked mangabeys are higher in disturbed compared to undisturbed forest areas in Kibale National Park, Uganda. Animal Conservation, 15, 242–247.CrossRefGoogle Scholar
  40. Juan, S., Estrada, A., & Coates-Estrada, R. (2000). Contrastes y similitudes en el uso de recursos y patrón general de actividades en tropas de monos aulladores (Alouatta palliata) en fragmentos de selva de Los Tuxtlas, México. Neotropical Primates, 8, 131–135.Google Scholar
  41. Khan, M. Z., Altmann, J., Isani, S. S., & Yu, J. (2002). A matter of time: Evaluating the storage of fecal samples for steroid analysis. General and Comparative Endocrinology, 128, 57–64.PubMedCrossRefGoogle Scholar
  42. Kraemer, W.J., Fragala, M.S., Watson, G., Volek, J.S., Rubin, M.R., French, D.N., Maresh, C.M., Vingren, J.L., Spiering, B.A., Yu-Ho, J., Hughes, S.L., Case, H.S., Stuempfle, K.J., Lehmann, D.R., Bailey, S., & Evans, D.S. (2008). Hormonal responses to a 160–km race across frozen Alaska. British Journal of Sports Medicine, 42, 116–120.PubMedCrossRefGoogle Scholar
  43. Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L., & Lovejoy, T. E. (2000). Rainforest fragmentation kills big trees. Nature, 404, 836.PubMedCrossRefGoogle Scholar
  44. Lukacs, P. M., Thompson, W. L., Kendall, W. L., Gould, W. R., Doherty, P. F., Burnham, K. P., & Anderson, D. R. (2007). Concerns regarding a call for pluralism of information theory and hypothesis testing. Journal of Applied Ecology, 44(2), 456–460.CrossRefGoogle Scholar
  45. Martínez-Mota, R., Valdespino, C., Sánchez-Ramos, M. A., & Serio-Silva, J. C. (2007). Effects of forest fragmentation on the physiological stress response of black howler monkeys. Animal Conservation, 10, 374–379.CrossRefGoogle Scholar
  46. Mastorakos, G., & Ilias, I. (2003). Maternal and fetal hypothalamic–pituitary–adrenal axes during pregnancy and postpartum. Annals of the New York Academy of Science, 997, 136–149.CrossRefGoogle Scholar
  47. Milton, K. (1980). The foraging strategy of howler monkeys: A study of primate economics. New York: Columbia University Press.Google Scholar
  48. Muller, M. N., & Wrangham, R. W. (2004). Dominance, cortisol and stress in wild chimpanzees (Pan troglodytes schweinfurthii). Behavioral Ecology and Sociobiology, 55, 332–340.CrossRefGoogle Scholar
  49. Mundry, R. (2010). Issues in information theory-based statistical inference—a commentary from a frequentist’s perspective. Behavioral Ecology and Sociobiology, 65, 57–68.CrossRefGoogle Scholar
  50. Pride, R. E. (2005a). Optimal group size and seasonal stress in ring-tailed lemurs (Lemur catta). Behavioral Ecology, 16, 550–560.CrossRefGoogle Scholar
  51. Pride, R. E. (2005b). Foraging success, agonism and predator alarms: Behavioural predictors of cortisol in Lemur catta. International Journal of Primatology, 26, 295–319.CrossRefGoogle Scholar
  52. R Development Core Team. (2011). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  53. Rangel-Negrín, A., Alfaro, J. L., Valdez, R. A., Romano, M. C., & Serio-Silva, J. C. (2009). Stress in Yucatan spider monkeys: Effects of environmental conditions on fecal cortisol levels in wild and captive populations. Animal Conservation, 12, 496–502.CrossRefGoogle Scholar
  54. Richards, S. A., Whittingham, M. J., & Stephens, P. A. (2010). Model selection and model averaging in behavioural ecology: The utility of the IT-AIC framework. Behavioral Ecology and Sociobiology, 65, 77–89.CrossRefGoogle Scholar
  55. Rodríguez-Luna, E., Domínguez-Domínguez, L. E., Morales-Móvil, J. E., & Martínez-Morales, M. (2003). Foraging strategy changes in a Alouatta palliata mexicana troop released on an island. In L. K. Marsh (Ed.), Primates in fragments: Ecology and conservation (pp. 229–250). New York: Kluwer Academic/Plenum.Google Scholar
  56. Romero, L. M., & Wikelski, M. (2001). Corticosterone levels predict survival probabilities of Galapagos marine iguanas during el Niño events. Proceedings of the National Academy of Sciences of the USA, 98, 7366–7370.PubMedCrossRefGoogle Scholar
  57. Sapolsky, R. M. (1993). The physiology of dominance in stable versus unstable social hierarchies. In W. A. Mason & S. P. Mendoza (Eds.), Primate social conflict (pp. 171–204). Albany: State University of New York Press.Google Scholar
  58. Sapolsky, R. M. (1994). Individual differences and the stress response. Seminars in Neuroscience, 6, 261–269.CrossRefGoogle Scholar
  59. Sapolsky, R. M. (2002). Endocrinology of the stress response. In J. B. Becker, S. M. Breedlove, & D. Crews (Eds.), Behavioural endocrinology (pp. 409–450). Cambridge, MA: MIT Press.Google Scholar
  60. Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. Endocrine Reviews, 21, 55–89.PubMedCrossRefGoogle Scholar
  61. Setchell, J., Smith, T., Wickings, E. J., & Knapp, L. A. (2008). Factors affecting fecal glucocorticoid levels in semi-free-ranging female mandrills (Mandrillus sphinx). American Journal of Primatology, 70, 1–10.CrossRefGoogle Scholar
  62. Soto, M., & Gama, L. (1997). Climas. In E. González Soriano, R. Dirzo, & R. Vogt (Eds.), Historia natural de Los Tuxtlas (pp. 7–23). México City: UNAM and CONABIO.Google Scholar
  63. Strier, K. B., Mendes, S. L., & Santos, R. R. (2001). Timing of births in sympatric brown howler monkeys (Alouatta fusca clamitans) and northern muriquis (Brachyteles arachnoids hypoxanthus). American Journal of Primatology, 55, 87–100.PubMedCrossRefGoogle Scholar
  64. Tharp, G. D. (1975). The role of glucocorticoids in exercise. Medicine & Science in Sports & Exercise, 7, 6–11.Google Scholar
  65. Wasser, S. K., Hunt, K. E., Brown, J. L., Cooper, K., Crockett, C. M., Bechert, U., Millspaugh, J. J., Larson, S., & Monfort, S. L. (2000). A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology, 120, 260–275.PubMedCrossRefGoogle Scholar
  66. Wingfield, J. C. (2005). The concept of allostasis: Coping with a capricious environment. Journal of Mammalogy, 86, 248–254.CrossRefGoogle Scholar
  67. Wingfield, J. C., & Romero, L. M. (2001). Adrenocortical responses to stress and their modulation in free-living vertebrates. In B. S. McEwan (Ed.), Handbook of physiology. Section 7: The endocrine system. Vol. 4: Coping with the environment: neural and endocrine mechanisms (pp. 211–236). Oxford: Oxford University Press.Google Scholar
  68. Zar, J. (2009). Biostatistical analysis (5th ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  69. Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jacob C. Dunn
    • 1
    • 2
    Email author
  • Jurgi Cristóbal-Azkarate
    • 1
  • Björn Schulte-Herbrüggen
    • 3
  • Roberto Chavira
    • 4
  • Joaquím J. Veà
    • 5
  1. 1.Primate Immunogenetics and Molecular Ecology Research Group, Division of Biological AnthropologyUniversity of CambridgeCambridgeUK
  2. 2.Centro de Investigaciones TropicalesEx-Hacienda Lucas MartínXalapaMéxico
  3. 3.United Nations Environment Programme World Conservation Monitoring CentreEcosystem Assessment ProgrammeCambridgeUK
  4. 4.Departamento de Biología de la ReproducciónInstituto de Ciencias Médicas y Nutrición Salvador ZubiránMexicoMéxico
  5. 5.Centre Especial de Recerca en Primats, Facultat de PsicologiaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations