Skip to main content
Log in

Vocal Tract Morphology Determines Species-Specific Features in Vocal Signals of Lemurs (Eulemur)

International Journal of Primatology Aims and scope Submit manuscript

Abstract

The source-filter theory describes vocal production as a two-stage process involving the generation of a sound source, with its own spectral structure, which is then filtered by the resonant properties of the vocal tract. This theory has been successfully applied to the study of animal vocal signals since the 1990s. As an extension, models reproducing vocal tract resonance can be used to reproduce formant patterns and to understand the role of vocal tract filtering in nonhuman vocalizations. We studied three congeneric lemur species —Eulemur fulvus, E. macaco, E. rubriventer— using morphological measurements to build computational models of the vocal tract to estimate formants, and acoustic analysis to measure formants from natural calls. We focused on call types emitted through the nose, without apparent articulation. On the basis of anatomical measurements, we modeled the vocal tract of each species as a series of concatenated tubes, with a cross-sectional area that changed along the tract to approximate the morphology of the larynx, the nasopharyngeal cavity, the nasal chambers, and the nostrils. For each species, we calculated the resonance frequencies in 2500 randomly generated vocal tracts, in which we simulated intraspecific length and size variation. Formant location and spacing showed significant species-specific differences determined by the length of the vocal tract. We then measured formants of a set of nasal vocalizations (“grunts”) recorded from captive lemurs of the same species. We found species-specific differences in the natural calls. This is the first evidence that morphology of the vocal tract is relevant in generating filter-related acoustic cues that potentially provide receivers with information about the species of the emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Altmann, J. (1974). Observational study of behavior: sampling methods. Behaviour, 49, 227–267.

    Article  PubMed  CAS  Google Scholar 

  • Aubin, T., & Jouventin, P. (2002). How to identify vocally a kin in a crowd? The penguin model. Advances in the Study of Behavior, 31, 243–277.

    Article  Google Scholar 

  • Aubin, T., Mathevon, N., Staszewski, V., & Boulinier, T. (2007). Acoustic communication in the Kittiwake Rissa tridactyla: potential cues for sexual and individual signatures in long calls. Polar Biology, 30, 1027–1033.

    Article  Google Scholar 

  • Blumstein, D. T., & Munos, O. (2005). Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. Animal Behavior, 69, 353–361.

    Article  Google Scholar 

  • Boersma, P. (2001). Praat, a system for doing phonetics by computer. Glot International, 5, 341–345.

    Google Scholar 

  • Colquhoun, I.C. (1997). A predictive socioecological study of the black lemur (Eulemur macaco macaco) in northwestern Madagascar. PhD Dissertation: Washington University.

  • de Boer, B., & Fitch, W. T. (2010). Computer models of vocal tract evolution: an overview and critique. Adaptive Behavior, 18, 36–47.

    Article  Google Scholar 

  • Development Core Team, R. (2008). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Efremova, K. O., Volodin, I. A., Volodina, E. V., Frey, R., Lapshina, E. N., & Soldatova, N. V. (2011). Developmental changes of nasal and oral calls in the goitred gazelle Gazella subgutturosa, a nonhuman mammal with a sexually dimorphic and descended larynx. Naturwissenschaften, 98, 919–931.

    Article  PubMed  CAS  Google Scholar 

  • Fant, G. (1960). Acoustic theory of speech production. The Hague: Mouton.

    Google Scholar 

  • Fitch, W. T. (1997). Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. Journal of the Acoustical Society of America, 102, 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. T. (2000). The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica, 57, 205–218.

    Article  PubMed  CAS  Google Scholar 

  • Fitch, W. T. (2006). Production of vocalizations in mammals. In K. Brown (Ed.), Encyclopedia of language and linguistics (pp. 115–121). Oxford: Elsevier.

    Google Scholar 

  • Fitch, W. T., & Fritz, J. B. (2006). Rhesus macaques spontaneously perceive formants in conspecific vocalizations. Journal of the Acoustical Society of America, 120, 2132–2141.

    Article  PubMed  Google Scholar 

  • Frey, R., Volodin, I., & Volodina, E. (2007). A nose that roars: anatomical specializations and behavioural features of rutting male saiga. Journal of Anatomy, 211, 717–736.

    Article  PubMed  Google Scholar 

  • Gamba, M. (2006). Evoluzione della comunicazione vocale nei lemuri del Madagascar. Ph.D., dissertation, University of Torino.

  • Gamba, M., & Giacoma, C. (2005). Key issues in the study of primate acoustic signals. Journal of Anthropological Sciences, 83, 61–87.

    Google Scholar 

  • Gamba, M., & Giacoma, C. (2006). Vocal tract modeling in a prosimian primate: the black and white ruffed lemur. Acta Acustica united with Acustica, 92, 749–755.

    Google Scholar 

  • Gamba, M., & Giacoma, C. (2007). Quantitative acoustic analysis of the vocal repertoire of the crowned lemur. Ethology Ecology Evolution, 19, 323–343.

    Article  Google Scholar 

  • Gamba, M., & Giacoma, C. (2008). Subspecific divergence in the black lemur’s low-pitched vocalizations. The Open Acoustic Journal. doi:10.2174/1874837600801010049.

  • Gamba, M., Colombo, C., & Giacoma, C. (2012). Acoustic cues to caller identity in lemurs: a case study. Journal of Ethology, 30, 191–196.

    Article  Google Scholar 

  • Gautier, J.-P. (1971). Étude morphologique et fonctionelle des annexes extra-laryngées des Cercopithecinae: liaison avec les cris d'espacement. Biologia Gabonica, 7, 229–267.

    Google Scholar 

  • Gautier, J.-P., & Gautier-Hion, A. (1982). Vocal communication within a group of monkeys: Analysis by biotelemetry. In C. T. Snowdon, C. H. Brown, & M. Petersen (Eds.), Primate communication (pp. 5–29). New York: Cambridge University Press.

    Google Scholar 

  • Ghazanfar, A. A., Turesson, H. J., Maier, J. X., van Dinther, R., Patterson, R. D., & Logothetis, N. K. (2007). Vocal tract resonances as indexical cues in rhesus monkeys. Current Biology, 17, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Glander, K. E., Wright, P. C., Daniels, P. S., & Merenlender, A. M. (1992). Morphometrics and testicle size of rainforest lemur species from southeastern Madagascar. Journal of Human Evolution, 22, 1–17.

    Article  Google Scholar 

  • Gosset, D., Fornasieri, I., & Roeder, J.-J. (2001). Acoustic structure and contexts of emission of vocal signals by black lemurs. Evolution of Communication, 4, 225–251.

    Article  Google Scholar 

  • Harrison, D. F. N. (1995). The anatomy and physiology of the mammalian larynx. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kewley-Port, D., & Watson, C. S. (1994). Formant-frequency discrimination for isolated English vowels. Journal of the Acoustical Society of America, 95, 485–496.

    Article  PubMed  CAS  Google Scholar 

  • Lieberman, P., Klatt, D. H., & Wilson, W. H. (1969). Vocal tract limitations on the vowel repertoires of rhesus monkey and other nonhuman primates. Science, 164, 1185–1187.

    Article  PubMed  CAS  Google Scholar 

  • Macedonia, J. M., & Stanger, K. F. (1994). Phylogeny of the lemuridae revisited: evidence from communication signals. Folia Primatologica, 63, 1–43.

    Article  CAS  Google Scholar 

  • Markel, J. D., & Gray, A. H. (1976). Linear prediction of speech. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Mitchell, C., Gillette, R., Vernon, J., & Herman, P. (1970). Pure-tone auditory behavioral thresholds in three species of lemurs. Journal of the Acoustical Society of America, 48, 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier, R. A., Louis, E. E., Jr., Richardson, M., Schwitzer, C., Langrand, O., Rylands, A. B., et al. (2010). Lemurs of Madagascar (3rd ed.). Washington, DC: Conservation International.

    Google Scholar 

  • Nicastro, N. (2004). Perceptual and acoustic evidence for species-level differences in meow vocalizations by domestic cats (Felis catus) and African wild cats (Felis silvestris lybica). Journal of Comparative Psychology, 118, 287–296.

    Article  PubMed  Google Scholar 

  • Reby, D., & McComb, K. (2003). Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. Animal Behavior, 65, 519–530.

    Article  Google Scholar 

  • Riede, T., & Fitch, W. T. (1999). Vocal tract length and acoustics of vocalization in the domestic dog Canis familiaris. Journal of Experimental Biology, 202, 2859–2867.

    PubMed  CAS  Google Scholar 

  • Riede, T., Bronson, E., Hatzikirou, H., & Zuberbuhler, K. (2005). Vocal production in a non-human primate: morphological data and a model. Journal of Human Evolution, 48, 85–96.

    Article  PubMed  Google Scholar 

  • Riede, T., Suthers, R. A., Fletcher, N. H., & Blevins, W. E. (2006). Songbirds tune their vocal tract to the fundamental frequency of their song. Proceedings of the National Academy of Sciences of the USA, 103, 5543–5548.

    Article  PubMed  CAS  Google Scholar 

  • Rousseeuw, P. J. (1987) Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

    Google Scholar 

  • Shipley, C., Carterette, E. C., & Buchwald, J. S. (1991). The effect of articulation on the acoustical structure of feline vocalization. Journal of Acoustical Society America, 89, 902–909.

    Article  CAS  Google Scholar 

  • Sokal, R. R., & Rohlf, F. J. (1995). Biometry: the principles and practice of statistics in biological research (3rd ed.) New York: W.H. Freeman.

  • Taylor, A. M., & Reby, D. (2010). Contribution of the source-filter theory to the study of mammal vocal communication. Journal of Zoology, 280, 221–236.

    Article  Google Scholar 

  • Terranova, C. J., & Coffman, B. S. (1997). Body weights of wild and captive lemurs. Zoo Biology, 16, 17–30.

    Article  Google Scholar 

  • Titze, I. R. (1994). Principles of voice production. Englewood Cliffs: Prentice Hall.

  • Volodin, I. A., Lapshina, E. N., Volodina, E. V., Frey, R., & Soldatova, N. V. (2011). Nasal and oral calls in juvenile goitred gazelles (Gazella subgutturosa) and their potential to encode sex and identity. Ethology, 117, 294–308.

    Article  Google Scholar 

  • Xue, S. A., & Hao, J. G. (2006). Normative standards for vocal tract dimensions by race as measured by acoustic pharyngometry. Journal of Voice, 20, 391–400.

    Article  PubMed  Google Scholar 

  • Zhang, Z., & Espy-Wilson, C. (2004). A vocal tract model of American English /l/. Journal of the Acoustical Society of America, 115, 1274–1280.

    Article  PubMed  Google Scholar 

  • Zhao, Y., & Karypis, G. (2001) Criterion functions for document clustering: experiments and analysis. Technical Report TR 01-40, University of Minnesota.

  • Zhou, X., Zhang, Z., & Espy-Wilson, C. (2004). VTAR: a Matlab-based computer program for vocal tract acoustic modeling. Journal of the Acoustical Society of America, 115, 2543–2543.

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Università degli Studi di Torino and by grants from the Parco Natura Viva—Centro Tutela Specie Minacciate. We thank Dr. Cesare Avesani Zaborra, Dr. Caterina Spiezio, Gilbert Rakotoarisoa, Jules Medard, Haingoson Randriamialison, Hajanirina Ramino, and Fanomezantsoa Andrianirina for their help and logistic support. We also thank two anonymous referees and the editor for their comments on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Gamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamba, M., Friard, O. & Giacoma, C. Vocal Tract Morphology Determines Species-Specific Features in Vocal Signals of Lemurs (Eulemur). Int J Primatol 33, 1453–1466 (2012). https://doi.org/10.1007/s10764-012-9635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-012-9635-y

Keywords

Navigation