International Journal of Primatology

, Volume 33, Issue 6, pp 1420–1438 | Cite as

Using Giving-Up Densities to Test for Dietary Preferences in Primates: An Example with Samango Monkeys (Cercopithecus (nictitans) mitis erythrarchus)

Article

Abstract

Teasing apart the components of diet selection is important for understanding an animal’s ecology. We used giving-up densities (GUDs) in artificial food patches to test whether free-ranging samango monkeys (Cercopithecus (nictitans) mitis erythrarchus) treat food and water as complementary resources and to examine dietary preferences. To assess the influence of water on the value of food, we measured harvest of peanuts from food patches augmented with water. To examine dietary preferences, we measured the harvest of peanuts (as a standard for comparing other food classes), raisins, alfalfa pellets, and either mealworms or cat food mixed into sawdust in separate food patches. In addition, we observed the samangos’ order of selection of each food. To differentiate preference from ease of encounter, we measured selectivity for peanuts in triplets of food patches containing 1) peanuts, 2) peanuts mixed with a test food (raisins, alfalfa, or mealworms), and 3) the test food. Water did not influence samango foraging. After peanuts, the samangos treated alfalfa and raisins as approximately equal. The samangos foraged on mealworms lightly and rejected cat food. When each food was mixed with peanuts, the monkeys exhibited an expanding specialist dietary strategy in which they altered their rates of encounter with their preferred foods at high resource densities. Samango monkeys at our study site are not water limited, they consistently favor high-energy foods, and they least often choose animal protein. We conclude that patch-use experiments coupled with direct observations provide a useful means for examining dietary strategy, food preferences, and water limitation.

Keywords

Cercopithecus (nictitans) mitis erythrarchus Diet selection Giving-up density Primate foraging Samango monkey 

References

  1. Abu Baker, M. A., & Brown, J. S. (2009). Patch area, substrate depth, and richness affect giving-up densities: a test with mourning doves and cottontail rabbits. Oikos, 118, 1721–1731.CrossRefGoogle Scholar
  2. Abu Baker, M. A., & Brown, J. S. (2010). Islands of fear: effects of wooded patches on habitat suitability of the striped mouse in a South African grassland. Functional Ecology, 24, 1313–1322.CrossRefGoogle Scholar
  3. Altendorf, K. B., Laundré, J. W., López González, C. A., & Brown, J. S. (2001). Assessing effects of predation risk on foraging behavior of mule deer. Journal of Mammalogy, 82, 430–439.CrossRefGoogle Scholar
  4. Barton, R. A., Whiten, A., Strum, S. C., Byrne, R. W., & Simpson, A. J. (1992). Habitat use and resource availability in baboons. Animal Behaviour, 43, 831–844.CrossRefGoogle Scholar
  5. Beeson, M. (1989). Seasonal dietary stress in a forest monkey (Cercopithecus mitis). Oecologia, 78, 565–570.CrossRefGoogle Scholar
  6. Bowers, M. A., Jefferson, J. L., & Kuebler, M. G. (1993). Variation in giving-up densities of foraging chipmunks (Tamias striatus) and squirrels (Sciurus carolinensis). Oikos, 66, 229–236.CrossRefGoogle Scholar
  7. Brown, J. S. (1988). Patch use as an indicator of habitat preference, predation risk, and competition. Behavioral Ecology and Sociobiology, 22, 37–47.CrossRefGoogle Scholar
  8. Brown, J. S. (1992). Patch use under predation risk I: models and predictions. Annales Zoologici Fennici, 29, 301–309.Google Scholar
  9. Brown, J. S. (2000). Foraging ecology of animals in response to heterogeneous environments. In J. Hutchings & A. Stewart (Eds.), The ecological consequences of environmental heterogeneity (pp. 181–215). Oxford: Blackwell Scientific.Google Scholar
  10. Brown, J. S., & Kotler, B. P. (2004). Hazardous duty pay and the foraging cost of predation. Ecology Letters, 7, 999–1014.CrossRefGoogle Scholar
  11. Brown, J. S., & Mitchell, W. A. (1989). Diet selection on depletable resources. Oikos, 54, 33–43.CrossRefGoogle Scholar
  12. Brown, J. S., & Morgan, R. A. (1995). Effects of foraging behavior and spatial scale on diet selectivity: a test with fox squirrels. Oikos, 74, 122–136.CrossRefGoogle Scholar
  13. Brugiere, D., Gautier, J., Moungazi, A., & Gautier-Hion, A. (2002). Primate diet and biomass in relation to vegetation composition and fruiting phenology in a rain forest in Gabon. International Journal of Primatology, 23, 999–1024.CrossRefGoogle Scholar
  14. Bruorton, M. R., Davis, C. L., & Perrin, M. R. (1991). Gut microflora of vervet and samango monkeys in relation to diet. Applied and Environmental Microbiology, 57, 573–578.PubMedGoogle Scholar
  15. Buzzard, P. J. (2006). Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. International Journal of Primatology, 27, 529–558.CrossRefGoogle Scholar
  16. Chapman, C. A. (1988). Patterns of foraging and range use by three species of neotropical primates. Primates, 29, 177–194.CrossRefGoogle Scholar
  17. Charnov, E. L. (1976). Optimal foraging theory, the marginal value theorem. Theoretical Population Biology, 9, 129–136.PubMedCrossRefGoogle Scholar
  18. Chesson, J. (1983). The estimation and analysis of preference and its relationship to foraging models. Ecology, 64, 1297–1304.CrossRefGoogle Scholar
  19. Cordeiro, N. J. (1994). Opportunist killers – blue monkeys feed on forest birds. Folia Primatologica, 63, 84–87.CrossRefGoogle Scholar
  20. Cords, M. (1986). Interspecific and intraspecific variation in diet of two forest guenons. Cercopithecus ascanius and C. mitis. Journal of Animal Ecology, 55, 811–827.CrossRefGoogle Scholar
  21. Culver, D. C., & Beattie, A. J. (1978). Myrmecochory in Viola: dynamics of seed-ant interactions in some West Virginia species. Journal of Ecology, 66, 53–72.CrossRefGoogle Scholar
  22. Di Bitetti, M. S., & Janson, C. H. (2001). Social foraging and the finder’s share in capuchin monkeys, Cebus apella. Animal Behaviour, 62, 47–56.CrossRefGoogle Scholar
  23. Emerson, S. E., Brown, J. S., & Linden, J. D. (2011). Identifying Sykes’ monkeys’, Cercopithecus albogularis erythrarchus, axes of fear through patch use. Animal Behaviour, 81, 455–462.CrossRefGoogle Scholar
  24. Emerson, S. E., Brown, J. S., Whelan, C. J., & Schmidt, K. A. (2012). Scale-dependent neighborhood effects: shared doom and associational refuge. Oecologia, 168, 659–670.PubMedCrossRefGoogle Scholar
  25. Fairgrieve, C., & Muhumuza, G. (2003). Feeding ecology and dietary differences between blue monkey (Cercopithecus mitis stuhlmanni Matschie) groups in logged and unlogged forest, Budongo Forest Reserve, Uganda. African Journal of Ecology, 41, 141–149.CrossRefGoogle Scholar
  26. Garb, J., Kotler, B. P., & Brown, J. S. (2000). Foraging and community consequences of seed size for coexisting crested lark and Allenby’s gerbil. Oikos, 88, 291–300.CrossRefGoogle Scholar
  27. Gautier-Hion, A. (1983). Leaf consumption by monkeys in western and eastern Africa: comparison. African Journal of Ecology, 21, 107–113.CrossRefGoogle Scholar
  28. Hahn, N. (2006). Floristic diversity of the Soutpansberg, Limpopo Province, South Africa. Ph.D. thesis, University of Pretoria, Pretoria, South Africa.Google Scholar
  29. Hay, M. E., & Fuller, P. J. (1981). Seed escape from heteromyid rodents: the importance of microhabitat and seed preference. Ecology, 62, 1395–1399.CrossRefGoogle Scholar
  30. Heikamp, B. (2008). The role of cheek pouches in seed dispersal: An analysis of dispersal methods within a free ranging group of Sykes’ monkeys (Cercopithecus albogularis) in the Western Soutpansberg, South Africa. Diploma Thesis. Julius Maximilians University, Würzburg, Germany.Google Scholar
  31. Heller, R. (1980). On optimal diet in a patchy environment. Theoretical Population Biology, 17, 201–214.PubMedCrossRefGoogle Scholar
  32. Hochman, V., & Kotler, B. P. (2006). Effects of food quality, diet preference and water on patch use by Nubian ibex. Oikos, 112, 547–554.CrossRefGoogle Scholar
  33. Hochman, V., & Kotler, B. P. (2007). Patch use, apprehension, and vigilance behavior of Nubian ibex under perceived risk of predation. Behavioral Ecology, 18, 368–374.CrossRefGoogle Scholar
  34. Houle, A., Vickery, W., & Chapman, C. (2006). Testing mechanisms of coexistence among two species of frugivorous primates. Journal of Animal Ecology, 75, 1034–1044.PubMedCrossRefGoogle Scholar
  35. Iredale, S. K., Nevill, C. H., & Lutz, C. K. (2010). The influence of observer presence on baboon (Papio spp.) and rhesus macaque (Macaca mulatta) behavior. Applied Animal Behaviour Science, 122, 53–57.PubMedCrossRefGoogle Scholar
  36. Isbell, L. A., & Young, T. (1993). Human presence reduces predation in a free-ranging vervet monkey population in Kenya. Animal Behaviour, 45, 1233–1235.CrossRefGoogle Scholar
  37. Janmaat, K. R. L., Chapman, C. A., Meijer, R., & Zuberbühler, K. (2012). The use of fruiting synchrony by foraging mangabey monkeys: a ‘simple tool’ to find fruit. Animal Cognition, 15, 83–96.PubMedCrossRefGoogle Scholar
  38. Jones, L. D., Cooper, R. W., & Harding, R. S. (1972). Composition of mealworm Tenebrio molitor larvae. The Journal of Zoo Animal Medicine, 3, 34–41.CrossRefGoogle Scholar
  39. Kaplin, B. A. (2001). Ranging behavior of two species of guenons (Cercopithecus lhoesti and C. mitis doggetti ) in the Nyungwe Forest Reserve, Rwanda. International Journal of Primatology, 22, 521–548.CrossRefGoogle Scholar
  40. Kaplin, B. A., & Moermond, T. C. (1998). Variation in seed handling by two species of forest monkeys in Rwanda. American Journal of Primatology, 45, 83–101.PubMedCrossRefGoogle Scholar
  41. Kotler, B. P., Dickman, C. R., & Brown, J. S. (1998). The effects of water on patch use by two Simpson Desert granivores (Corvus coronoides and Pseudomys hermannsburgensis). Australian Journal of Ecology, 23, 574–578.CrossRefGoogle Scholar
  42. Lambert, J. E. (1998). Primate digestion: interactions among anatomy, physiology, and feeding ecology. Evolutionary Anthropology, 7, 8–20.CrossRefGoogle Scholar
  43. Lambert, J. E. (1999). Seed handling in chimpanzees (Pan troglodytes) and redtail monkeys (Cercopithecus ascanius): implications for understanding hominoid and cercopithecine fruit-processing strategies and seed dispersal. American Journal of Physical Anthropology, 109, 365–386.PubMedCrossRefGoogle Scholar
  44. Lambert, J. E. (2001). Red-tailed guenons (Cercopithecus ascanius) and Strychnos mitis: evidence for plant benefits beyond seed dispersal. International Journal of Primatology, 22, 189–201.CrossRefGoogle Scholar
  45. Lambert, J. E. (2007). Primate nutritional ecology. In C. J. Campbell, A. Fuentes, K. C. MacKinnon, M. Panger, & S. K. Bearder (Eds.), Primates in perspective (pp. 482–495). Oxford: Oxford University Press.Google Scholar
  46. Lambert, J. E., & Chapman, C. A. (2005). The fate of primate dispersed seeds: Deposition pattern, dispersal distance, and implications for conservation. In P. M. Forget, J. E. Lambert, P. Hulme, & S. Vander Wall (Eds.), Seed fate: Predation, dispersal and seedling establishment (pp. 137–150). Wallingford: CAB International Publishers.Google Scholar
  47. Lawes, M. J. (1991). Diet of samango monkeys (Cercopithecus mitis erythrarchus) in the Cape Vidal dune forest, South Africa. Journal of Zoology, 224, 149–173.CrossRefGoogle Scholar
  48. Makin, D. F., Payne, H. F. P., Kerley, G. I. H., & Shrader, A. M. (2012). Foraging in a 3-D world: How does predation risk affect space use of vervet monkeys? Journal of Mammalogy, 93, 422–428.CrossRefGoogle Scholar
  49. Manly, B. F. J. (1974). A model for certain types of selection experiments. Biometrics, 30, 281–294.CrossRefGoogle Scholar
  50. Morris, D. W., Kotler, B. P., Brown, J. S., Sundararaj, V., & Ale, S. B. (2009). Behavioral indicators for conserving mammalian diversity. The Year in Ecology and Conservation Biology, 1162, 334–356.Google Scholar
  51. Nagy, K. A., & Milton, K. (1979). Aspects of dietary quality, nutrient assimilation and water balance in wild howler monkeys (Alouatta palliata). Oecologia, 39, 249–258.CrossRefGoogle Scholar
  52. Olsson, O., Brown, J. S., & Smith, H. G. (2002). Long- and short-term state-dependent foraging under predation risk: An indication of habitat quality. Animal Behaviour, 63, 1–9.CrossRefGoogle Scholar
  53. Oyugi, J. O., & Brown, J. S. (2003). Giving-up densities and habitat preferences of European starlings and American robins. Condor, 105, 130–135.CrossRefGoogle Scholar
  54. Rudran, R. (1978). Socioecology of the blue monkeys (Cercopithecus mitis stuhlmanni) of the Kibale Forest, Uganda. Smithsonian Contributions to Zoology, 249, 88 p. Washington, DC: Smithsonian Institution Press.Google Scholar
  55. Schmidt, K. A., Brown, J. S., & Morgan, R. (1998). Plant defenses as complementary resources: a test with squirrels. Oikos, 81, 130–142.CrossRefGoogle Scholar
  56. Shrader, A., Kotler, B. P., Brown, J. S., & Kerley, G. I. H. (2008). Providing water for goats in arid landscapes: Effects on feeding effort with regard to time period, herd size and secondary compounds. Oikos, 117, 466–472.CrossRefGoogle Scholar
  57. Skinner, J. D., & Chimimba, C. T. (2005). The mammals of the Southern African sub-region (3rd ed.). Cambridge: Cambridge University Press.Google Scholar
  58. Sterck, E. H. M., & Steenbeek, R. (1997). Female dominance relationships and food competition in the sympatric Thomas langur and long-tailed macaque. Behaviour, 134, 749–774.CrossRefGoogle Scholar
  59. Tilman, D. (1982). Resource competition and community structure. Princeton: Princeton University Press.Google Scholar
  60. Turner, V. L. (2003). Effects of seed preference and selectivity by Microtus and Peromyscus at an Illinois prairie restoration. Ph.D. dissertation. University of Illinois at Chicago.Google Scholar
  61. Valone, T. J., & Brown, J. S. (1989). Measuring patch assessment abilities of desert granivores. Ecology, 70, 1800–1810.CrossRefGoogle Scholar
  62. van Schaik, C. P., Marshall, A. J., & Wich, S. A. (2009). Geographic variation in orangutan behavior and biology: Its functional interpretation and its mechanistic basis. In S. A. Wich, S. S. Utami Atmoko, T. Mitra Setia, & C. P. van Schaik (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 351–361). New York: Oxford University Press.Google Scholar
  63. Vogel, E. R., Haag, L., Mitra-Setia, T., van Schaik, C. P., & Dominy, N. J. (2009). Foraging and ranging behavior during a fallback episode: Hylobates albibarbis and Pongo pygmaeus wurmbii compared. American Journal of Physical Anthropology, 140, 1096–8644.CrossRefGoogle Scholar
  64. Wahome, J. M., Cords, M., & Rowell, T. E. (1988). Blue monkeys eat mice. Folia Primatologica, 51, 158–160.CrossRefGoogle Scholar
  65. Whelan, C. J., & Jedlicka, D. M. (2007). Augmenting population monitoring programs with behavioral indicators during ecological restorations. Israel Journal of Ecology and Evolution, 53, 279–295.CrossRefGoogle Scholar
  66. Wittig, R. M., & Boesch, C. (2003). Food competition and linear dominance hierarchy among female chimpanzees of the Taï National Park. International Journal of Primatology, 24, 847–867.CrossRefGoogle Scholar
  67. Worman, C. O., & Chapman, C. A. (2005). Seasonal variation in the quality of a tropical ripe fruit and the response of three frugivores. Journal of Tropical Ecology, 21, 689–697.CrossRefGoogle Scholar
  68. Wrangham, R. W., & Waterman, P. G. (1981). Feeding behaviour of vervet monkeys on Acacia tortilis and Acacia xanthophloea: With special reference to reproductive strategies and tannin production. Journal of Animal Ecology, 50, 715–731.CrossRefGoogle Scholar
  69. Wrangham, R. W., Conklin-Brittain, N., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiologyKentucky Wesleyan CollegeOwensboroUSA
  2. 2.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations