International Journal of Primatology

, Volume 33, Issue 3, pp 716–742 | Cite as

Reconstructing the Diet of an Extinct Hominin Taxon: The Role of Extant Primate Models

Article

Abstract

Modern humans represent the only surviving species of an otherwise extinct clade of primates, the hominins. As the closest living relatives to extinct hominins, extant primates are an important source of comparative information for the reconstruction of the diets of extinct hominins. Methods such as comparative and functional morphology, finite element analysis, dental wear, dental topographic analysis, and stable isotope biogeochemistry must be validated and tested within extant populations before they can be applied to extinct taxa. Here we review how these methods have and might be used to reconstruct the diet of a particular extinct hominin, Paranthropus boisei, which has no extant analogue for its highly derived masticatory morphology. Our review emphasizes the potential and limitations of using extant primates as models for the reconstruction of extinct hominin diets. We encourage paleoanthropologists and those who study the feeding behaviors of extant primates to work together to investigate and validate methods for interpreting the diets of all extinct primates, including hominins.

Keywords

Comparative primatology Diet reconstruction Modeling Paranthropus boisei 

References

  1. Anderson, J. R. (1990). Use of objects as hammers to open nuts by capuchin monkeys (Cebus apella). Folia Primatologica, 54, 138–145.CrossRefGoogle Scholar
  2. Berthaume, M., Gross, I. R., Patel, N. D., Strait, D. S., Wood, S., & Richmond, B. G. (2010). The effect of early hominin occlusal morphology on the fracturing of hard food items. Anatomical Record, 293, 594–606.CrossRefGoogle Scholar
  3. Boyer, D. M. (2008). Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.PubMedCrossRefGoogle Scholar
  4. Boyer, D. M. (2010). Relief index of second mandibular molars is a correlate of diet among prosimian primates and other euarchontan mammals. Journal of Human Evolution, 55, 1118–1137.CrossRefGoogle Scholar
  5. Brockman, D. K., & van Schaik, C. P. (Eds.). (2005). Seasonality in primates: Studies of living and extinct human and non-human primates. Cambridge, UK: Cambridge University Press.Google Scholar
  6. Bunn, J. M., Boyer, D. M., Lipman, Y., St. Clair, E. M., Jernvall, J., & Daubechies, I. (2011). Comparing Dirichlet normal surface energy of tooth crowns, a new technique of molar shape quantification for dietary inference, with previous methods in isolation and in combination. American Journal of Physical Anthropology, 145, 247–261.PubMedCrossRefGoogle Scholar
  7. Butler, P. M. (1952). The milk-molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society of London, 121, 777–817.CrossRefGoogle Scholar
  8. Butler, P. M. (1973). Molar wear facets of early Tertiary North American primates. In M. R. Zingeser (Ed.), Symposia of the Fourth International Congress of Primatology ((pp, Vol. 111, pp. 1–27). Basel: Karger.Google Scholar
  9. Carter, M. L. (2001). Sensitivity of stable isotopes ( 13 C, 15 N, and 18 O) in bone to dietary specialization and niche separation among sympatric primates in Kibale National Park, Uganda. Ph.D. thesis, University of Chicago.Google Scholar
  10. Carvalho, S., Biro, D., Cunha, E., Hockings, K., McGrew, W. C., Richmond, B. G., & Matsuzawa, T. (2012). Chimpanzee carrying behavior and the origins of human bipedality. Current Biology, 22, R180–R181.PubMedCrossRefGoogle Scholar
  11. Cerling, T. E., Hart, J. A., & Hart, T. B. (2004). Stable isotope ecology in the Ituri Forest. Oecologia, 138, 5–12.PubMedCrossRefGoogle Scholar
  12. Cerling, T. E., Mbua, E., Kirera, F. M., Manthi, F. K., Grine, F. E., Leakey, M. G., Sponheimer, M., & Uno, K. T. (2011). Diet of Paranthropus boisei in the early Pleistocene of East Africa. PNAS, 108, 9337–9341.PubMedCrossRefGoogle Scholar
  13. Chapman, C. A., Chapman, L. J., Gautier-Hion, A., Lambert, J. E., Rode, K., Tutin, C. E. G., & White, L. J. T. (2002). Variation in the diet of Cercopithecus monkeys: Differences within forests, among forests, and across species. In M. E. Glenn & M. Cords (Eds.), The guenons: Diversity and adaptation in African monkeys. New York: Springer.Google Scholar
  14. Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M., De Ruiter, D., Sealy, J., Grant, R., & Fourie, N. (2007). Diets of savanna ungulates from stable carbon isotope composition of faeces. Journal of Zoology, 273, 21–29.CrossRefGoogle Scholar
  15. Conklin-Brittain, N. L., Knott, C. D., & Wrangham, R. W. (2001). The feeding ecology of apes. In The apes: Challenges for the 21st century. Conference Proceedings, May 10–13, 2000, Brookfield, IL (pp. 167–174). Chicago: Chicago Zoological Society.Google Scholar
  16. Constantino, P. J., Lee, J. J.-W., Chai, H., Zipfel, B., Ziscovici, C., Lawn, B. R., & Lucas, P. W. (2010). Tooth chipping can reveal the diet and bite forces of fossil hominins. Biology Letters, 6, 826–829.PubMedCrossRefGoogle Scholar
  17. Constantino, P. J., Lucas, P. W., Lee, J. J. W., & Lawn, B. R. (2009). The influence of fallback foods on great ape tooth enamel. American Journal of Physical Anthropology, 140, 653–660.PubMedCrossRefGoogle Scholar
  18. Constantino, P. J., Markham, K., & Lucas, P. W. (2012). Tooth chipping as a tool to reconstruct Great Ape diets. International Journal of Primatology, 33. doi:10.1007/s10764-012-9595-2.
  19. Constantino, P. J., & Wright, B. W. (2009). The importance of fallback foods in primate ecology and evolution. American Journal of Physical Anthropology, 140, 599–602.PubMedCrossRefGoogle Scholar
  20. Cooke, S. B. (2011). Paleodiet of extinct platyrrhines with emphasis on the Caribbean forms: three-dimensional geometric morphometric analysis of mandibular second molars. Anatomical Record, 294, 2073–2091.CrossRefGoogle Scholar
  21. Crowley, B. E. (2012). Stable isotope techniques and applications for primatologists. International Journal of Primatology, 33. doi:10.1007/s10764-012-9582-7.
  22. Daegling, D. J. (1992). Mandibular morphology and diet in the genus Cebus. International Journal of Primatology, 13, 545–570.CrossRefGoogle Scholar
  23. Daegling, D. J., & Grine, F. E. (1994). Bamboo feeding, dental microwear, and diet of the Pleistocene ape Gigantopithecus blacki. South African Journal of Science, 90, 527–532.Google Scholar
  24. Daegling, D. J., & Grine, F. E. (1999). Terrestrial foraging and dental microwear in Papio ursinus. Primates, 40, 559–572.CrossRefGoogle Scholar
  25. Daegling, D. J., McGraw, W. S., Ungar, P. S., Pampush, J. D., Vick, A. E., & Bitty, E. A. (2011). Hard-object feeding in sooty mangabeys (Cercocebus atys) and interpretation of early hominin feeding ecology. PLoS ONE, 6. doi:10.1371/journal.pone.0023095.
  26. Dennis, J. C., Ungar, P. S., Teaford, M. F., & Glander, K. E. (2004). Dental topography and molar wear in Alouatta palliata. American Journal of Physical Anthropology, 125, 152–161.PubMedCrossRefGoogle Scholar
  27. Dominy, N. J., Vogel, E. R., Yeakel, J. D., Constantino, P., & Lucas, P. W. (2008). Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evolutionary Biology, 35, 159–175.CrossRefGoogle Scholar
  28. Du Brul, L. (1977). Early hominid feeding mechanisms. American Journal of Physical Anthropology, 47, 305–320.PubMedCrossRefGoogle Scholar
  29. Dumont, E. R. (1995). Enamel thickness and dietary adaptation among extant primates and chiropterans. Journal of Mammalogy, 76, 1127–1136.CrossRefGoogle Scholar
  30. Elton, S. (2006). 40 years on and still going strong: The use of the hominin-cercopithecoid comparison in human evolution. Journal of the Royal Anthropological Institute, 12, 19–38.CrossRefGoogle Scholar
  31. Evans, A. R., Wilson, G. P., Fortelius, M., & Jernvall, J. (2007). High-level similarity of dentitions in carnivorans and rodents. Nature, 445, 78–81.PubMedCrossRefGoogle Scholar
  32. Fourie, N. H., Lee-Thorp, J. A., & Ackermann, R. R. (2008). Biogeochemical and craniometric investigation of dietary ecology, niche separation, and taxonomy of Plio-Pleistocene cercopithecoids from the Makapansgat Limeworks. American Journal of Physical Anthropology, 135, 121–135.PubMedCrossRefGoogle Scholar
  33. Galetti, M., & Pedroni, F. (1994). Seasonal diet of capuchin monkeys (Cebus apella) in a semideciduous forest in south-east Brazil. Journal of Tropical Ecology, 10, 27–39.CrossRefGoogle Scholar
  34. Gittleman, J. L. (1994). Are the pandas successful specialists or evolutionary failures? BioScience, 44, 456–464.CrossRefGoogle Scholar
  35. Grine, F. E. (1981). Trophic differences between “gracile” and “robust” australopithecines, a scanning electron microscope analysis of occlusal events. South African Journal of Science, 77, 203–230.Google Scholar
  36. Grine, F. E., Judex, S., Daegling, D. J., Ozcivici, E., Ungar, P. S., Teaford, M. F., Sponheimer, M., Scott, J., Scott, R. S., & Walker, A. (2010). Craniofacial biomechanics and functional and dietary inferences in hominin paleontology. Journal of Human Evolution, 58, 293–308.PubMedCrossRefGoogle Scholar
  37. Gumert, M. D., Kluck, M., & Malaivijitnond, S. (2009). The physical characteristics and usage patterns of stone axe and pounding hammers used by long-tailed macaques in the Andaman Sea region of Thailand. American Journal of Primatology, 7, 594–608.CrossRefGoogle Scholar
  38. Harrison, G. A., Tanner, J. M., Pilbeam, D. R., & Baker, P. T. (1988). Human biology: An introduction to human evolution and adaptability. Oxford: Oxford University Press.Google Scholar
  39. Harrison, M. E., & Marshall, A. J. (2011). Strategies for the use of fallback foods in apes. International Journal of Primatology, 32, 531–565.PubMedCrossRefGoogle Scholar
  40. Izawa, K. (1979). Foods and feeding behavior of wild black-capped capuchin (Cebus apella). Primates, 20, 57–76.CrossRefGoogle Scholar
  41. Janson, C. (1985). Aggressive competition and individual food consumption in wild brown capuchin monkeys (Cebus apella). Behavioral Ecology and Sociobiology, 18, 125–138.CrossRefGoogle Scholar
  42. Jernvall, J., Gilbert, C. C., & Wright, P. C. (2008). Peculiar tooth homologies of the greater bamboo lemur (Hapalemur simus): When is a paracone not a paracone? In J. G. Fleagle & C. G. Gilbert (Eds.), Elwyn Simons: A search for origins. New York: Springer.Google Scholar
  43. Jolly, C. J. (1970). The seed-eaters: A new model of hominid differentiation based on a baboon analogy. Man, 5, 5–26.CrossRefGoogle Scholar
  44. Kanyunyi Basabose, A. (2002). Diet composition of chimpanzees inhabiting the Montane forest of Kahuzi, Democratic Republic of Congo. American Journal of Primatology, 58, 1–21.PubMedCrossRefGoogle Scholar
  45. Kay, R. F. (1975). The functional adaptations of primate molar teeth. American Journal of Physical Anthropology, 43, 195–216.PubMedCrossRefGoogle Scholar
  46. Kay, R. F. (1981). The nut-crackers – a new theory of the adaptations of the Ramapithecinae. American Journal of Physical Anthropology, 55, 141–151.CrossRefGoogle Scholar
  47. Kay, R. F., & Hiiemae, K. M. (1974). Jaw movement and tooth use in recent and fossil primates. American Journal of Physical Anthropology, 40, 227–256.PubMedCrossRefGoogle Scholar
  48. Kimbel, W. H., & Rak, Y. (1985). Functional morphology of the asterionic region in extant hominoids and fossil hominids. American Journal of Physical Anthropology, 66, 31–54.PubMedCrossRefGoogle Scholar
  49. Laden, G., & Wrangham, R. (2005). The rise of hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and australopith origins. Journal of Human Evolution, 49, 482–498.PubMedCrossRefGoogle Scholar
  50. Lambert, J. E. (2009). Summary to the symposium issue: Primate fallback strategies as adaptive phenotypic plasticity – scale, pattern, and process. American Journal of Physical Anthropology, 130, 759–766.CrossRefGoogle Scholar
  51. Lambert, J. E. (2010). Primate nutritional ecology: Feeding biology and diet at ecological and evolutionary scales. In C. Campbell, A. Fuentes, K. C. MacKinnon, S. K. Bearder, & R. M. Stumpf (Eds.), Primates in perspective (2nd ed.). Oxford: Oxford University Press.Google Scholar
  52. Lambert, J. E., Chapman, C. A., Wrangham, R. W., & Conklin-Brittain, N. L. (2004). Hardness of cercopithecine foods: Implications for the critical function of enamel thickness in exploiting fallback foods. American Journal of Physical Anthropology, 125, 363–368.PubMedCrossRefGoogle Scholar
  53. Liem, K. (1980). Adaptive significance of intra- and interspecific differences in the feeding repertoires of cichlid fishes. American Zoologist, 20, 295–314.Google Scholar
  54. Lucas, P. W. (2004). Dental functional morphology: How teeth work. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  55. Lucas, P. W., Constantino, P., Wood, B., & Lawn, B. (2008). Dental enamel as a dietary indicator in mammals. BioEssays, 30, 374–385.PubMedCrossRefGoogle Scholar
  56. Lucas, P. W., Constantino, P. J., Chalk, J., Ziscovici, C., Wright, B. W., Fragaszy, D. M., Hill, D. A., Lee, J. J.-W., Chai, H., Darvell, B. W., Lee, P. K. D., & Yuen, T. D. B. (2009). Indentation as a technique to assess the mechanical properties of fallback foods. American Journal of Physical Anthropology, 140, 643–652.PubMedCrossRefGoogle Scholar
  57. Lucas, P. W., & Corlett, R. T. (1985). Plio-pleistocene hominid diets: An approach combining masticatory and ecological analysis. Journal of Human Evolution, 14, 187–202.CrossRefGoogle Scholar
  58. Lucas, P. W., Turner, I. M., Dominy, N. J., & Yamashita, N. (2000). Mechanical defences to herbivory. Annals of Botany, 86, 913–920.CrossRefGoogle Scholar
  59. Lyell, C. (1830–33). Principles of geology, 3 vols. London: John Murray.Google Scholar
  60. Marshall, A. J., Boyko, C. M., Feilen, K. L., Boyko, R. H., & Leighton, M. (2009). Defining fallback foods and assessing their importance in primate ecology and evolution. American Journal of Physical Anthropology, 140, 603–614.PubMedCrossRefGoogle Scholar
  61. Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235.CrossRefGoogle Scholar
  62. Merceron, G., Taylor, S., Scott, R., Chaimanee, Y., & Jaeger, J.-J. (2006). Dietary characterization of the hominoid Khoratpithecus (Miocene of Thailand) evidence from dental topographic and microwear texture analyses. Naturwissenschaften, 93, 329–333.PubMedCrossRefGoogle Scholar
  63. Nystrom, P., Phillips-Conroy, J. E., & Jolly, C. J. (2004). Dental microwear in anubis and hybrid baboons (Papio hamadryas, sensu lato) living in Awash National Park, Ethiopia. American Journal of Physical Anthropology, 125, 279–291.PubMedCrossRefGoogle Scholar
  64. O’Regan, H. J., Chenery, C., Lamb, A. L., Stevens, R. E., Rook, L., & Elton, S. (2008). Modern macaque dietary heterogeneity assessed using stable isotope analysis of hair and bone. Journal of Human Evolution, 55, 617–626.PubMedCrossRefGoogle Scholar
  65. Poulsen, J. R., Clark, C. J., & Smith, T. B. (2001). Seasonal variation in the feeding ecology of the grey-cheeked mangabey (Lophocebus albigena) in Cameroon. American Journal of Physical Anthropology, 54, 91–105.Google Scholar
  66. Pruetz, J. D. (2006). Feeding ecology of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates. Cambridge, UK: Cambridge University Press.Google Scholar
  67. Rak, Y. (1983). The australopithecine face. New York: Academic Press.Google Scholar
  68. Richmond, B. G., Wright, B. W., Grosse, I., Dechow, P. C., Ross, C. F., Spencer, M. A., & Strait, D. S. (2005). Finite element analysis in functional morphology. American Journal of Physical Anthropology, 283A, 259–274.Google Scholar
  69. Robinson, B. W., & Wilson, D. S. (1998). Optimal foraging, specialization, and a solution to Liem’s paradox. American Naturalist, 151, 223–235.PubMedCrossRefGoogle Scholar
  70. Schmidt, C. W. (2010). On the relationship of dental microwear to dental macrowear. American Journal of Physical Anthropology, 142, 67–73.PubMedGoogle Scholar
  71. Schoeninger, M. J., Moore, J., & Sept, J. M. (1999). Subsistence strategies of two “savanna” chimpanzee populations: The stable isotope evidence. American Journal of Primatology, 49, 297–314.PubMedCrossRefGoogle Scholar
  72. Schwartz, G. T. (2000). Taxonomic and functional aspects of the patterning of the enamel thickness distribution in extant large-bodied hominoids. American Journal of Physical Anthropology, 111, 221–244.PubMedCrossRefGoogle Scholar
  73. Scott, R. S., Teaford, M. F., & Ungar, P. S. (2012). Dental microwear texture and anthropoid diets. American Journal of Physical Anthropology, 147, 551–579.PubMedCrossRefGoogle Scholar
  74. Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., & Walker, A. (2006). Dental microwear texture analysis: Technical considerations. Journal of Human Evolution, 51, 339–349.PubMedCrossRefGoogle Scholar
  75. Seiffert, E. R., Simons, E. L., Boyer, D. M., Perry, J. G. M., Ryan, T. M., & Sallam, H. M. (2010). A fossil primate of uncertain affinities from the earliest late Eocene of Egypt. PNAS, 107, 9712–9717.PubMedCrossRefGoogle Scholar
  76. Skinner, M. M., Evans, A., Smith, T., Jernvall, J., Tafforeau, P., Kupczik, K., Olejniczak, A. J., Rosas, A., Radovcic, J., Thackeray, J. F., Toussaint, M., & Hublin, J.-J. (2010). Brief communication: Contributions of enamel junction shape and enamel deposition to primate molar crown complexity. American Journal of Physical Anthropology, 142, 157–163.PubMedGoogle Scholar
  77. Spears, I. R., & Crompton, R. H. (1996). The mechanical significance of the occlusal geometry of great ape molars in food breakdown. Journal of Human Evolution, 31, 517–535.CrossRefGoogle Scholar
  78. Spencer, M. A. (2003). Tooth-root form and function in platyrrhine seed-eaters. American Journal of Physical Anthropology, 122, 325–335.PubMedCrossRefGoogle Scholar
  79. Sponheimer, M., Codron, D., Passey, B. H., de Ruiter, D. J., Cerling, T. E., & Lee-Thorp, J. A. (2009). Using carbon isotopes to track dietary change in modern, historical, and ancient primates. American Journal of Physical Anthropology, 140, 661–670.PubMedCrossRefGoogle Scholar
  80. Sponheimer, M., de Ruiter, D., Lee-Thorp, J., & Spath, A. (2005). Sr/Ca and early hominin diets revisited: new data from modern and fossil tooth enamel. Journal of Human Evolution, 48, 147–156.PubMedCrossRefGoogle Scholar
  81. Sponheimer, M., Robinson, T., Ayliffe, L., Roeder, B., Hammer, J., Passey, B., West, A., Cerling, T., Dearing, D., & Ehleringer, J. (2003). Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. International Journal of Osteoarchaeology, 13, 80–87.CrossRefGoogle Scholar
  82. Strait, D. S., Richmond, B. G., Spencer, M. A., Ross, C. F., Dechow, P. C., & Wood, B. A. (2007). Masticatory biomechanics and its relevance to early hominid phylogeny: an examination of palatal thickness using finite-element analysis. Journal of Human Evolution, 52, 585–599.PubMedCrossRefGoogle Scholar
  83. Strait, D. S., Weber, G. W., Constantino, P., Lucas, P. W., Richmond, B. R., Spencer, M. A., Dechow, P. C., Ross, C. F., Grosse, I. R., Wright, B. W., Wood, B. A., Wang, Q., Byron, C., & Slice, D. E. (2012). Microwear, mechanics and the feeding adaptations of Australopithecus africanus. Journal of Human Evolution, 62, 165–168.PubMedCrossRefGoogle Scholar
  84. Strait, D. S., Weber, G. W., Neubauer, S., Chalk, J., Richmond, B. G., Lucas, P. W., Spencer, M. A., Schrein, C., Dechow, P. C., Ross, C. F., Gross, I. R., Wright, B. W., Constantino, P., Wood, B. A., Lawn, B., Hylander, W. L., Wang, Q., Byron, C., Slice, D. E., & Smith, A. L. (2009). The feeding biomechanics and dietary ecology of Australopithecus africanus. PNAS, 17, 2124–2129.CrossRefGoogle Scholar
  85. Suwa, G., Wood, B. A., & White, T. D. (1988). Further analysis of mandibular molar crown and cusp areas in early Pleistocene hominids. American Journal of Physical Anthropology, 93, 407–426.CrossRefGoogle Scholar
  86. Taylor, A. B. (2006). Feeding behavior, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo. Journal of Human Evolution, 50, 377–393.PubMedCrossRefGoogle Scholar
  87. Taylor, A. B., Vogel, E. R., & Dominy, N. J. (2008). Food material properties and mandibular load resistance abilities in large-bodied hominoids. Journal of Human Evolution, 55, 604–616.PubMedCrossRefGoogle Scholar
  88. Teaford, M. F. (1985). Molar microwear and diet in the genus Cebus. American Journal of Physical Anthropology, 66, 363–370.PubMedCrossRefGoogle Scholar
  89. Teaford, M. F. (1993). Dental microwear and diet in extant and extinct Theropithecus: preliminary analyses. In N. Jablonski (Ed.), Theropithecus: The rise and fall of a primate genus. Cambridge, UK: Cambridge University Press.Google Scholar
  90. Teaford, M. F., & Oyen, O. J. (1989a). Live primates and dental replication: new problems and new techniques. American Journal of Physical Anthropology, 80, 73–81.PubMedCrossRefGoogle Scholar
  91. Teaford, M. F., & Oyen, O. J. (1989b). In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology, 80, 447–460.PubMedCrossRefGoogle Scholar
  92. Teaford, M. F., & Runestad, J. A. (1992). Dental microwear and diet in Venezuelan primates. American Journal of Physical Anthropology, 88, 347–364.PubMedCrossRefGoogle Scholar
  93. Teaford, M. F., & Walker, A. (1984). Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. American Journal of Physical Anthropology, 64, 191–200.PubMedCrossRefGoogle Scholar
  94. Thackeray, J. F., Henzi, S. P., & Brain, C. K. (1996). Stable carbon and nitrogen isotope analysis of bone collagen in Papio cynocephalus ursinus: Comparison with ungulates and Homo sapiens from southern and East African environments. South African Journal of Science, 92, 209–212.Google Scholar
  95. Tobias, P. V. (1967). Olduvai Gorge: The cranium and maxillary dentition of Australopithecus (Zinjanthropus) boisei (Vol. 2). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  96. Tooby, J., & DeVore, I. (1987). The reconstruction of hominid behavioral evolution through strategic modeling. In W. G. Kinzey (Ed.), The evolution of human behavior: Primate models. New York: SUNY Press.Google Scholar
  97. Tuttle, R. H. (1975). Primate functional morphology and evolution. Boston: Mouton De Gruyter.CrossRefGoogle Scholar
  98. Ungar, P. S. (1994). Incisor microwear of Sumatran anthropoid primates. American Journal of Physical Anthropology, 94, 339–363.PubMedCrossRefGoogle Scholar
  99. Ungar, P. S. (2004). Dental topography and diets of Australopithecus afarensis and early Homo. Journal of Human Evolution, 46, 605–622.PubMedCrossRefGoogle Scholar
  100. Ungar, P. S. (2007). The evolution of the human diet. Oxford: Oxford University Press.Google Scholar
  101. Ungar, P. S., & Bunn, J. (2008). Primate dental topographic analysis and functional morphology. In J. D. Irish & G. C. Nelson (Eds.), Technique and application in dental anthropology. Cambridge, UK: Cambridge University Press.Google Scholar
  102. Ungar, P. S., & Grine, F. E. (1991). Incisor size and wear in Australopithecus africanus and Paranthropus robustus. Journal of Human Evolution, 20, 313–340.CrossRefGoogle Scholar
  103. Ungar, P. S., Grine, F. E., & Teaford, M. F. (2008). Dental microwear indicates that Paranthropus boisei was not a hard-object feeder. PLoS ONE, 3, 1–6.CrossRefGoogle Scholar
  104. Ungar, P. S., & Sponheimer, M. (2011). The diets of early hominins. Science, 334, 190–193.PubMedCrossRefGoogle Scholar
  105. Ungar, P. S., & Teaford, M. F. (1996). Preliminary examination of non-occlusal dental microwear in anthropoids: Implications for the study of fossil primates. American Journal of Physical Anthropology, 100, 101–113.PubMedCrossRefGoogle Scholar
  106. Ungar, P. S., & Williamson, M. E. (2000). Exploring the effects of tooth wear on function: a preliminary study of dental topography in Gorilla gorilla. Paleontologica Electronica, 3, 18.Google Scholar
  107. van der Merwe, N. J., Masao, F. T., & Bamford, M. K. (2008). Isotopic evidence for contrasting diets of early hominins Homo habilis and Australopithecus boisei of Tanzania. South African Journal of Science, 104, 153–155.Google Scholar
  108. Vinyard, C., Ravosa, M. J., & Wall, C. (2008). Primate craniofacial function and biology. New York: Springer.CrossRefGoogle Scholar
  109. Vogel, E. R., Haag, L., Mitra-Setia, T., van Schaik, C. P., & Dominy, N. J. (2009). Foraging and ranging behavior during a fallback episode: Hylobates albibarbis and Pongo pygmaeus wurmbii compared. American Journal of Physical Anthropology, 140, 716–726.PubMedCrossRefGoogle Scholar
  110. Vogel, E. R., van Woerden, J. T., Lucas, P. W., Atmoko, S. S. U., van Schaik, C. P., & Dominy, N. J. (2008). Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. Journal of Human Evolution, 55, 60–74.PubMedCrossRefGoogle Scholar
  111. Walker, A. C. (1980). Functional anatomy and taphonomy. In A. K. Behrensmeyer & A. P. Hill (Eds.), Fossils in the making (pp. 182–196). Chicago: University of Chicago Press.Google Scholar
  112. Walker, A. C. (1981). Diet and teeth – dietary hypotheses and human evolution. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 292, 57–64.CrossRefGoogle Scholar
  113. Wood, B., & Aiello, L. (1998). Taxonomic and functional implications of mandibular scaling in early hominins. American Journal of Physical Anthropology, 105, 523–538.PubMedCrossRefGoogle Scholar
  114. Wood, B., & Constantino, P. (2007). Paranthropus boisei: fifty years of evidence and analysis. Yearbook of Physical Anthropology, 50, 106–132.CrossRefGoogle Scholar
  115. Wood, B., & Lieberman, D. E. (2001). Craniodental variation in Paranthropus boisei: a developmental and functional perspective. American Journal of Physical Anthropology, 116, 13–25.PubMedCrossRefGoogle Scholar
  116. Wood, B., & Strait, D. (2004). Patterns of resource use in early Homo and Paranthropus. Journal of Human Evolution, 46, 119–162.PubMedCrossRefGoogle Scholar
  117. Wood, S. A., Strait, D. S., Dumont, E. R., Ross, C. F., & Grosse, I. R. (2011). The effects of modeling simplification on craniofacial finite element models: The alveoli (tooth sockets) and periodontal ligaments. Journal of Biomechanics, 44, 1831–1838.PubMedCrossRefGoogle Scholar
  118. Wrangham, R., Cheney, D., Seyfarth, R., & Sarmiento, E. (2009). Shallow-water habitats as sources of fallback foods for hominins. American Journal of Physical Anthropology, 140, 630–642.PubMedCrossRefGoogle Scholar
  119. Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary response of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.CrossRefGoogle Scholar
  120. Wright, B. W. (2005). Craniodental biometrics and dietary toughness in the genus Cebus. Journal of Human Evolution, 48, 473–492.PubMedCrossRefGoogle Scholar
  121. Yamagiwa, J., & Basabose, A. K. (2009). Fallback foods and dietary portioning among Pan and Gorilla. American Journal of Physical Anthropology, 140, 739–750.PubMedCrossRefGoogle Scholar
  122. Yeager, C. P. (1996). Feeding ecology of the long-tailed macaque (Macaca fascicularis) in Kalimantan Tengah, Indonesia. International Journal of Primatology, 17, 51–62.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Center for the Advanced Study of Hominid Paleobiology, Department of AnthropologyThe George Washington UniversityWashingtonUSA
  2. 2.Human Origins Program, National Museum of Natural HistorySmithsonian InstitutionWashingtonUSA

Personalised recommendations