Density and Spatial Distribution of Buffy-tufted-ear Marmosets (Callithrix aurita) in a Continuous Atlantic Forest

Abstract

The continued degradation of forest habitats and isolation of fragmented populations means that the conservation of endemic marmosets in the Brazilian Atlantic forest depends on human interventions including legal protection. Population monitoring is required to ensure effective management and appropriate allocation of conservation resources; however, deriving estimates of population metrics such as density within heterogeneous environments is challenging. We aimed to quantify the population density and spatial distribution of buffy-tufted-ear marmosets (Callithrix aurita) in the northern region of Serra-do-Mar State Park. We incorporated habitat suitability as quantified by a niche modeling algorithm (MAXENT) to refine density estimates obtained via distance methods. We used 6 environmental predictors to model the distribution of Callithrix aurita and used the resulting MAXENT niche model to identify environmental conditions that represent suitable habitat for this species. We used 877.7 km of line transect surveys and distance methods to derive estimates of 2.19 groups or 7.55 individuals/km2 from direct observations (n = 40), providing an overall population estimate of 1892 (95% CI = 1155–3068) individuals in 250.7 km2 of Atlantic forest. Our refined density estimate, obtained by combining distance methods and a niche model, yielded a result of 1386 individuals. Suitable habitat was not uniformly distributed across the study area and was most strongly associated with altitude and the type of vegetation cover. We provide a review of previous surveys and find this is the largest known population of Callithrix aurita. Our refinement of density estimates provides a simple and informative addition to the primatologist’s toolbox.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Beier, P., & Noss, R. F. (1998). Do habitat corridors provide connectivity? Conservation Biology, 12, 1241–1252.

    Article  Google Scholar 

  2. Bernardo, C. S. S., & Galetti, M. (2004). Densidade e tamanho populacional de primatas em um fragmento florestal no sudeste do Brasil. Revista Brasileira de Zoologia, 21, 827–832.

    Article  Google Scholar 

  3. Boehner, J., Koethe, R., Conrad, O., Gross, J., Ringeler, A., & Selige, T. (2002). Soil regionalisation by means of terrain analysis and process parameterisation. In E. Micheli, F. Nachtergaele, & L. Montanarella (Eds.), Soil classification (pp. 367–388). Luxembourg: European Soil Bureau. Research Report No. 7, EUR 20398 EN.

    Google Scholar 

  4. Boubli, J. P., & de Lima, M. G. (2009). Modeling the geographical distribution and fundamental niches of Cacajao spp. and Chiropotes israelita in Northwestern Amazonia via a Maximum Entropy Algorithm. International Journal of Primatology, 30, 217–228.

    Article  Google Scholar 

  5. Brancalion, P. H. S., Rodrigues, R. R., Gandolfi, S., Kageyama, P., Nave, A. G., Gandara, F. B., et al. (2010). Intrumentos legais podem contribuir para a restauração de florestas tropicais biodiversas. Revista Árvore, 34, 455–470.

    Article  Google Scholar 

  6. Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., & Thomas, L. (2001). Introduction to distance sampling. Oxford: Oxford University Press.

    Google Scholar 

  7. Buckland, S. T., Plumptre, A. J., Thomas, L., & Rexstad, E. A. (2010). Design and analysis of line transect surveys for primates. International Journal of Primatology, 31, 833–847.

    Article  Google Scholar 

  8. Buermann, W., Saatchi, S., Smith, T. B., Zutta, B. R., Chaves, J. A., Milá, B., et al. (2008). Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography, 35, 1160–1176.

    Article  Google Scholar 

  9. Cerqueira, R., Marroig, G., & Pinder, L. (1998). Marmosets and lion-tamarins distribution (Callitrichidae, Primates) in Rio de Janeiro State, southeastern Brazil. Mammalia, 62, 213–226.

    Article  Google Scholar 

  10. Coimbra-Filho, A. F. (1984). Situação atual dos calitriquídeos que ocorrem no Brasil (Callitrichidae-Primates). In M. T. de Mello (Ed.), A Primatologia no Brasil (pp. 15–33). Brasília: Sociedade Brasileira de Primatologia.

    Google Scholar 

  11. Coimbra-Filho, A. F., & Mittermeier, R. A. (1976). Exudate-eating and tree-gouging in marmosets. Nature, 262, 630.

    Article  Google Scholar 

  12. Coimbra-Filho, A. F., & Mittermeier, R. A. (1977). Tree-gouging, exudate-eating and the “short-tusked” condition in Callithrix and Cebuella. In D. G. Kleiman (Ed.), The biology and conservation of the Callitrichidae (pp. 105–115). Washington: Smithsonian Institution Press.

    Google Scholar 

  13. Cooney, R., & Dickson, B. (2005). Biodiversity and the precautionary principle: Risk and uncertainty in conservation and sustainable use. London: Earthscan Publications.

    Google Scholar 

  14. Corrêa, H. K. M. (1995). Ecologia e comportamento alimentar de um grupo de saguis-da-serra-escuros (Callithrix aurita E. Geoffroy, 1812) no Parque Estadual da Serra do Mar, Núcleo Cunha, São Paulo, Brasil. Master's thesis, Minas Gerais, Brazil:Universidade Federal de Minas Gerais.

  15. Corrêa, H. K. M., Coutinho, P. E. G., & Ferrari, S. F. (2000). Between-year differences in the feeding ecology of highland marmosets (Callithrix aurita and Callithrix flaviceps) in southeastern Brazil. Journal of Zoology, 252, 421–427.

    Google Scholar 

  16. Coutinho, P. E. G., & Corrêa, H. K. M. (1995). Polygyny in a free-ranging group of buffy-tufted-ear marmosets, Callithrix aurita. Folia Primatologica, 65, 25–29.

    Article  CAS  Google Scholar 

  17. Crooks, J. A., & Suarez, A. V. (2006). Hyperconnectivity, invasive species and the breakdown of barriers to dispersal. In K. R. Crooks & M. Sanjayan (Eds.), Connectivity conservation (pp. 451–478). Cambridge: Cambridge University Press.

    Google Scholar 

  18. Elith, J., & Leathwick, J. R. (2009). Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697.

    Article  Google Scholar 

  19. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  20. Felton, A. M., Engstram, L. M., Felton, A., & Knott, C. D. (2003). Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan Indonesia. Biological Conservation, 114, 91–101.

    Article  Google Scholar 

  21. Fonseca, G. A. B., & Lacher, T. E. (1984). Exudate-feeding by Callithrix jacchus penicillata in semideciduous woodland (Cerradão) in central Brazil. Primates, 25, 441–449.

    Article  Google Scholar 

  22. Fundação SOS Mata Atlântica, & INPE. (2008). Atlas dos remanescentes florestais da Mata Atlântica período 2000–2005. São Paulo: Fundação SOS Mata Atlântica/Instituto Nacional de Pesquisas Espaciais.

    Google Scholar 

  23. Galindo-Leal, C., & Câmara, I. G. (2003). The Atlantic forest of South America: Biodiversity status, threats, and outlook. Washington: Island Press.

    Google Scholar 

  24. Geise, L., Pereira, L. G., Bossi, D. E. P., & Bergallo, H. G. (2004). Pattern of elevational distribution and richness of non volant mammals in Itatiaia National Park and its surroundings, in southeastern Brazil. Brazilian Journal of Biology, 64, 599–612.

    Article  CAS  Google Scholar 

  25. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modeling, 135, 147–186.

    Article  Google Scholar 

  26. Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41–49.

    Article  CAS  Google Scholar 

  27. Hanski, I. (1999). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219.

    Article  Google Scholar 

  28. Harrison, S. (1991). Local extinction in a metapopulation context – an empirical evaluation. Biological Journal of the Linnean Society, 42, 73–88.

    Article  Google Scholar 

  29. Hastings, A., & Harrison, S. (1994). Metapopulation dynamics and genetics. Annual Review of Ecology and Systematics, 25, 167–188.

    Article  Google Scholar 

  30. Hazell, D., Hero, J. M., Lindenmayer, D., & Cunningham, R. (2004). A comparison of constructed and natural habitat for frog conservation in an Australian agricultural landscape. Biological Conservation, 119, 61–71.

    Article  Google Scholar 

  31. Heinrichs, J. A., Bender, D. J., Gummer, D. L., & Schumaker, N. H. (2010). Assessing critical habitat: evaluating the relative contribution of habitats to population persistence. Biological Conservation, 143, 2229–2237.

    Article  Google Scholar 

  32. Hengl, T., Sierdsema, H., Radovic, A., & Dilo, A. (2009). Spatial prediction of species' distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging. Ecological Modelling, 220, 3499–3511.

    Article  Google Scholar 

  33. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.

    Article  Google Scholar 

  34. Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X., & Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  Google Scholar 

  35. Instituto Florestal. (2008). Parque Estadual da Serra do Mar Plano de Manejo. São Paulo: Instituto Florestal do Estado de São Paulo.

    Google Scholar 

  36. Kareiva, P., Mullen, A., & Southwood, R. (1990). Dynamics in spatially complex environments: theory and data. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 330, 175–190.

    Article  Google Scholar 

  37. MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., & Hines, J. E. (2006). Occupancy estimation and modeling: Inferring patterns and dynamics of species occurrence. Amsterdam: Academic Press.

    Google Scholar 

  38. Marsden, S. J., Whiffin, M., Galetti, M., & Fielding, A. H. (2005). How well will Brazil’s system of Atlantic forest reserves maintain viable bird populations? Biodiversity and Conservation, 14, 2835–2853.

    Article  Google Scholar 

  39. Martins, M. M. (2000). Foraging over army ants by Callithrix aurita (Primates: Callitrichidae): seasonal occurence? Revista de Biología Tropical, 48, 261–262.

    Google Scholar 

  40. Martins, M. M. (2005). Density of primates in four semi-deciduous forest fragments of Sao Paulo, Brazil. Biodiversity and Conservation, 14, 2321–2329.

    Article  Google Scholar 

  41. Martins, M. M., & Setz, E. Z. F. (2000). Diet of buffy tufted-eared marmosets (Callithrix aurita) in a forest fragment in southeastern Brazil. International Journal of Primatology, 21, 467–476.

    Article  Google Scholar 

  42. Metzger, J. P. (2009). Conservation issues in the Brazilian Atlantic forest. Biological Conservation, 142, 1138–1140.

    Article  Google Scholar 

  43. Michalski, F., Peres, C. A., & Lake, I. R. (2008). Deforestation dynamics in a fragmented region of southern Amazonia: evaluation and future scenarios. Environmental Conservation, 35, 93–103.

    Article  Google Scholar 

  44. Michalski, F., Norris, D., & Peres, C. A. (2010). Backward step in Brazilian forest conservation policy. Science, 329, 1282.

    PubMed  Article  CAS  Google Scholar 

  45. Milton, K., & de Lucca, C. (1984). Population estimate for Brachyteles at Fazenda Barreiro Rico, Sao Paulo State, Brazil. IUCN/SSC Primate Specialist Group Newsletter, 4, 27–28.

    Google Scholar 

  46. Morrison, M., Marcot, B. G., & Mannan, R. W. (2006). Wildlife-habitat relationships: Concepts and applications. Washington: Island Press.

    Google Scholar 

  47. Muskin, A. (1984). Field notes and geographic distribution of Callithrix aurita in eastern Brazil. American Journal of Primatology, 7, 377–380.

    Article  Google Scholar 

  48. Negrão, M., & Valladares-Pádua, C. (2006). Registros de mamiferos de major porte na Reserva Florestal do Morro Grande, São Paulo. Biota Neotropica, 6, 0–0. doi:10.1590/S1676-06032006000200006.

  49. Olmos, F., & Martuscelli, P. (1995). Habitat and distribution of buffy tufted-ear marmoset Callithrix aurita in São Paulo State, Brazil, with notes on its natural history. Neotropical Primates, 3, 75–79.

    Google Scholar 

  50. Peres, C. A. (1999). General guidelines for standardizing line-transect surveys of tropical forest primates. Neotropical Primates, 7, 11–16.

    Google Scholar 

  51. Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.

    Article  Google Scholar 

  52. Phillips, S., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231–259.

    Article  Google Scholar 

  53. Pinto, N., Lasky, J., Bueno, R., Keitt, T., & Galetti, M. (2009). Primate densities in the Brazilian Atlantic Forest: The role of habitat quality and anthropogenic disturbance. In P. A. Garber, A. Estrada, J. C. Bicca-Marques, E. W. Heymann, & K. B. Strier (Eds.), South American primates: Comparative perspectives in the study of behavior, ecology and conservation (pp. 413–431). New York: Springer.

    Google Scholar 

  54. R Development Core Team. (2009). R (version 2.10.1): A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved February 1, 2010 from http://www.R-project.org

  55. Raboy, B. E., Canale, G. R., & Dietz, J. M. (2008). Ecology of Callithrix kuhlii and a review of eastern Brazilian marmosets. International Journal of Primatology, 29, 449–467.

    Article  Google Scholar 

  56. Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., & Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation, 142, 1141–1153.

    Article  Google Scholar 

  57. Russo, G. (2009). Biodiversity's bright spot. Nature, 462, 266–269.

    PubMed  Article  CAS  Google Scholar 

  58. Rylands, A. B. (1996). Habitat and the evolution of social and reproductive behavior in callitrichidae. American Journal of Primatology, 38, 5–18.

    Article  Google Scholar 

  59. Rylands, A. B., & Faria, D. S. (1993). Habitats, feeding ecology, and home range size in the genus Callithrix. In A. B. Rylands (Ed.), Marmosets and tamarins: Systematics, behaviour, and ecology (pp. 262–272). Oxford: Oxford University Press.

    Google Scholar 

  60. Rylands, A. B., Fonseca, G. A. B., Leite, Y. L., & Mittermeier, R. (1996). Primates of the Atlantic Forest: Origin, distribution, endemism, and communities. In M. Norconk, A. Rosenberger, & P. Garber (Eds.), Adaptive radiations of Neotropical primates (pp. 21–51). New York: Plenum Press.

    Google Scholar 

  61. Rylands, A. B., Kierulff, M. C. M., Mendes, S. L., & de Oliveira, M. M. (2008). Callithrix aurita. In IUCN 2010. IUCN Red List of Threatened Species. Version 2010.3. Retrieved September 6, 2010 from www.iucnredlist.org.

  62. Rylands, A. B., Coimbra-Filho, A. F., & Mittermeier, R. A. (2009). The systematics and distributions of the marmosets (Callithrix, Callibella, Cebuella, and Mico) and Callimico (Callimico) (Callitrichidae, Primates). In S. M. Ford, L. M. Porter, & L. C. Davis (Eds.), The smallest anthropoids: The marmoset/callimico radiation (pp. 25–62). New York: Springer.

    Google Scholar 

  63. Santos, B. A., Peres, C. A., Oliveira, M. A., Grillo, A., Alves-Costa, C. P., & Tabarelli, M. (2008). Drastic erosion in functional attributes of tree assemblages in Atlantic forest fragments of northeastern Brazil. Biological Conservation, 141, 249–260.

    Article  Google Scholar 

  64. Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 1, 14–22.

    Google Scholar 

  65. Stallings, J. R., Fonseca, G. A. B., Souza Pinto, L. P., Souza Aguilar, L. M., & Sábato, E. L. (1990). Mamiferos do Parque Florestal Estadual do Rio Doce, Minas Gerais, Brasil. Revista Brasileira de Zoologia, 7, 663–677.

  66. Tabarelli, M., Lopes, A. V., & Peres, C. A. (2008). Edge-effects drive tropical forest fragments towards an early-successional system. Biotropica, 40, 657–661.

    Article  Google Scholar 

  67. Tabarelli, M., Aguiar, A. V., Ribeiro, M. C., Metzger, J. P., & Peres, C. A. (2010). Prospects for biodiversity conservation in the Atlantic forest: lessons from aging human-modified landscapes. Biological Conservation, 143, 2328–2340.

    Article  Google Scholar 

  68. Thomas, L., Laake, J., Rexstad, E., Strindberg, S., Marques, F., Buckland, S., et al. (2009). Distance 6.0. Release 2. University of St. Andrews, UK: Research Unit for Wildlife Population Assessment. Retrieved February 20, 2010 from http://www.ruwpa.st-and.ac.uk/distance/.

  69. Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., et al. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology, 47, 5–14.

    PubMed  Article  Google Scholar 

  70. Traill, L. W., Bradshaw, C. J. A., & Brook, B. W. (2007). Minimum viable population size: a meta-analysis of 30 years of published estimates. Biological Conservation, 139, 159–166.

    Article  Google Scholar 

  71. Van Horne, B. (1983). Density as a misleading indicator of habitat quality. Journal of Wildlife Management, 47, 893–901.

    Article  Google Scholar 

  72. Villani, J. P. (1998). Plano de manejo das unidades de conservação: Parque Estadual da Serra do Mar-Núcleo Santa Virgínia. Plano de Gestão Ambiental-Fase 1. São Paulo: Secretaria do Meio Ambiente.

    Google Scholar 

  73. Wang, L., & Liu, H. (2006). An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science, 20, 193–213.

    Article  CAS  Google Scholar 

  74. Wiley, E. O., McNyset, K. M., Peterson, A. T., Robins, C. R., & Stewart, A. M. (2003). Niche modeling and geographic range predictions in the marine environment using a machine-learning algorithm. Oceanography, 16, 120–127.

    Google Scholar 

Download references

Acknowledgments

This project was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo – FAPESP (Biota Program, FAPESP 2001/14463-5, 2007/03392-6, and 2007/00613-1). M. Galetti received a fellowship from CNPq. R. Marques and F. Rocha-Mendes received a fellowship from FAPESP and D. Norris from CNPq. We thank Fernanda Michalski for compilation of density estimates of Callithrix aurita and invaluable comments on a previous version of this manuscript. We thank UNESP (Rio Claro) for logistical support and the Instituto Florestal de São Paulo for permission to conduct research in the study sites, logistical help, and accommodation. We thank 2 referees and the editor for their constructive comments, which led to a much improved version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Darren Norris.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 395 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Norris, D., Rocha-Mendes, F., Marques, R. et al. Density and Spatial Distribution of Buffy-tufted-ear Marmosets (Callithrix aurita) in a Continuous Atlantic Forest. Int J Primatol 32, 811–829 (2011). https://doi.org/10.1007/s10764-011-9503-1

Download citation

Keywords

  • Atlantic forest
  • Callitrichidae
  • Distance sampling
  • Line transect
  • MAXENT
  • Population density
  • Presence-only distribution modeling
  • Spatial distribution