Skip to main content
Log in

Bioenergetic Constraints on Primate Abundance

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

Explaining variation in primate population densities is central to understanding primate ecology, evolution, and conservation. Yet no researchers to date have successfully explained variation in primate population density across dietary class and phylogeny. Most previous work has focused on measures of food availability, as access to food energy likely constrains the number of individuals supported in a given area. However, energy output may provide a measure of energy constraints on population density that does not require detailed data on food availability for a given taxon. Across mammals, many studies have shown that population densities generally scale with body mass−0.75. Because individual energy expenditures scale with body mass0.75, population energy use (the product of population density and individual energy use) does not change with body mass, which suggests the existence of energy constraints on population density across body sizes, i.e., taxa are limited to a given amount of energy use, constraining larger taxa to lower densities. We examined population energy use and individual energy expenditure in primates and tested this energy equivalence across body mass. We also used a residual analysis to remove the effects of body mass on primate population densities and energy expenditures using basal metabolic rates (BMR; kcal/d) as a proxy for total daily energy expenditure. After taking into account phylogeny, population energy use did not significantly correlate with body mass. Larger primates, which use more energy per day, live at lower population densities than smaller primates. In addition, we found a significant negative correlation between residuals of BMR from body mass and residuals of population density from body mass after taking phylogeny into account. Thus, energy costs constrain population density across a diverse sample of primates at a given body mass, and primate species that have relatively low BMRs exist at relatively high densities. A better understanding of the determinants of primate energy costs across geography and phylogeny will ultimately help us explain and predict primate population densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen, A. P., Brown, J. H., & Gillooly, J. F. (2002). Blobal biodiversity, biochemical kinetics, and the energetic equivalence rule. Science, 297, 1545–1548.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong, E. (1985). Relative brain size in monkeys and prosimians. American Journal of Physical Anthropology, 66, 263–273.

    Article  CAS  PubMed  Google Scholar 

  • Blackburn, T. M., & Gaston, K. J. (1999). The relationship between animal abundance and body size: a review of the mechanisms. Advances in Ecological Research, 28, 181–210.

    Article  Google Scholar 

  • Blackburn, T. M., Lawton, J. H., & Pimm, S. L. (1993). Nonmetabolic explanations for the relationship between body size and animal abundance. Journal of Animal Ecology, 62, 694–702.

    Article  Google Scholar 

  • Blomberg, S. T., Garland, T. J., & Ives, A. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution, 57, 717–745.

    PubMed  Google Scholar 

  • Bromham, L., Rambaut, A., & Harvey, P. H. (1996). Determinants of rate variation in mammalian DNA sequence evolution. Journal of Molecular Evolution, 43, 610–621.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

    Article  Google Scholar 

  • Bruhn, J. M. (1934). The respiratory metabolism of infrahuman primates. American Journal of Physiology, 110, 477–484.

    CAS  Google Scholar 

  • Butynski, T. M. (1990). Comparative ecology of blue monkeys (Cercopithecus mitis) in high-density and low-density subpopulations. Ecological Monographs, 60, 1–26.

    Article  Google Scholar 

  • Byrne, R. W., Whiten, A., Henzi, S. P., & McCulloch, F. M. (1993). Nutritional constraints on mountain baboons (Papio ursinus): implications for baboon socioecology. Behavioral Ecology and Sociobiology, 33, 233–246.

    Article  Google Scholar 

  • Capellini, I., Venditti, C., & Barton, R. A. (in press). Phylogeny and the scaling of metabolic rates in mammals. Ecology

  • Careau, V., Morand-Ferron, J., & Thomas, D. (2007). Basal metabolic rate of canidae from hot deserts to cold arctic climates. Journal of Mammalogy, 88, 394–400.

    Article  Google Scholar 

  • Chapman, C. A., & Chapman, L. J. (1999). Implications of small scale variation in ecological conditions for the diet and density of red colobus monkeys. Primates, 40, 215–232.

    Article  Google Scholar 

  • Chapman, C. A., Chapman, L. J., Bjorndal, K. A., & Onderdonk, D. A. (2002). Application of protein-to-fiber ratios to predict colobine abundance on different spatial scales. International Journal of Primatology, 23, 283–310.

    Article  Google Scholar 

  • Chapman, C. C., Naughten-Treves, L., Lawes, M., & McDowel, L. (2004). Predicting folivorous primate abundance: validation of a nutritional model. American Journal of Primatology, 62, 55–69.

    Article  PubMed  Google Scholar 

  • Cohen, J. E., Jonsson, T., & Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the USA, 100, 1781–1786.

    Article  CAS  PubMed  Google Scholar 

  • Damuth, J. (1981). Population density and body size in mammals. Nature, 290, 699–700.

    Article  Google Scholar 

  • Damuth, J. (1987). Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy-use. Biological Journal of the Linnaean Society of London, 31, 193–246.

    Article  Google Scholar 

  • Daniels, H. L. (1984). Oxygen consumption in Lemur fulvus: deviation from the ideal model. Journal of Mammalogy, 65, 584–592.

    Article  Google Scholar 

  • Davies, A. G. (1994). Colobine populations. In A. G. Davies & J. F. Oates (Eds.), Colobine monkeys: their ecology, behaviour and evolution (pp. 285–310). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dittus, W. J. P. (1979). The evolution of behaviors regulating density and age-specific sex ratios in a primate population. Behaviour, 69, 265–302.

    Article  Google Scholar 

  • Drack, S., Ortmann, S., Buhrmann, N., Schmid, J., Warren, R. D., Heldmaier, G., et al. (1999). Field metabolic rate and the cost of ranging of the Red-tailed Sportive Lemur. In B. Rakotosamimanana, H. Rasaminanana, J. U. Ganzhorn, & S. M. Goodman (Eds.), New directions in lemur studies (pp. 83–91). New York: Plenum.

    Google Scholar 

  • Dunbar, R. I. M. (1992). A model of the gelada socioecological system. Primates, 33, 69–83.

    Article  Google Scholar 

  • Enquist, B. J., Brown, J. H., & West, G. B. (1998). Allometric scaling of plant energetics and population density. Nature, 395, 163–165.

    Article  CAS  Google Scholar 

  • Enquist, B. J., & Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Fa, J. E., & Purvis, A. (1997). Diet and population density in afrotropical forest mammals: a comparison with neotropical species. The Journal of Animal Ecology, 66, 98–112.

    Article  Google Scholar 

  • Fabre, P. H., Rodriguesa, A., & Douzerya, E. J. P. (2009). Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular phylogenetics and evolution, 53, 808–825.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. (1985). Phylogenis and the comparative method. American Naturalist, 125, 1–15.

    Article  Google Scholar 

  • Fimbel, C. (1994). Ecological correlates of species success in modified habitats may be disturbance-specific and site-specific: the primates of Tiwai island. Conservation Biology, 8, 106–113.

    Article  Google Scholar 

  • Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. American Naturalist, 160, 712–726.

    Article  CAS  PubMed  Google Scholar 

  • Ganzhorn, J. U. (2002). Distribution of a folivorous lemur in relation to seasonally varying food resources: integrating quantitative aspects of food characteristics. Oecologia, 131, 427–435.

    Article  Google Scholar 

  • Garland, T., Jr., & Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist, 155, 346–364.

    Article  Google Scholar 

  • Garland, T., Jr., Harvey, P. H., & Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogentically independent contrasts. Systematic Biology, 41, 18–32.

    Google Scholar 

  • Gaulin, S. J. C. (1979). A Jarman/Bell model of primate-feeding niches. Human Ecology, 7, 1–20.

    Article  Google Scholar 

  • Gavrilets, S. (2000). Rapid evolution of reproductive barriers driven by sexual conflict. Nature, 403, 886–889.

    Article  CAS  PubMed  Google Scholar 

  • Glazier, D. S. (2005). Beyond the ‘3/4 power law’: variation in the intra- and interspecific scaling of metabolic rate in animals. Biological Reviews, 80, 611–662.

    Article  PubMed  Google Scholar 

  • Godfrey, L., Samonds, K., Jungers, W., Sutherland, M., & Irwin, M. (2004). Ontogenetic correlates of diet in Malagasy lemurs. American Journal of Physical Anthropology, 123, 250–276.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, A. D. (2006). Scaling of size and dimorphism in primates II: macroevolution. International Journal of Primatology, 27, 63–105.

    Article  Google Scholar 

  • Greenwood, J. J. D., Gregory, R. D., Harris, S., Morris, P. A., & Yalden, D. W. (1996). Relations between abundance, body size and species number in British birds and mammals. Philosophical Transactions of the Royal Society of London Series B Biological Sciences, 351, 265–278.

    Article  Google Scholar 

  • Griffiths, D. (1992). Size, abundance, and energy use in communities. Journal of Animal Ecology, 61, 307–315.

    Article  Google Scholar 

  • Gupta, A. K., & Chivers, D. J. (1999). Biomass and use of resources in south and south-east Asian primate communities. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 38–54). Cambridge: Cambridge University Press.

    Google Scholar 

  • Hanya, G., Yoshihiro, S., Zamma, K., Matsubara, H., Ohtake, M., Kubo, R., et al. (2004). Environmental determinants of the altitudinal variations in relative group densities of Japanese macaques on Yakushima. Ecological Research, 19, 485–493.

    Article  Google Scholar 

  • Harcourt, A. H. (2000). Latitude and latitudinal extent: a global analysis of the Rapoport effect in a tropical mammalian taxon: primates. Journal of Biogeography, 27, 1169–1182.

    Article  Google Scholar 

  • Hildwein, G. (1972). Métabolisme énergetique de quelques mammaifères et oiseaux de la forêt équatoriale. II. Résultats experimentaux et discussion. Archives des Sciences Physiologiques (Paris), 26, 387–400.

    CAS  Google Scholar 

  • Hildwein, G., & Goffart, M. (1975). Standard metabolism and thermoregulation in a prosimian, Perodicticus potto. Comparative Biochemistry and Physiology Part A, 50A, 201–213.

    Google Scholar 

  • Isaac, N. J. B., & Carbone, C. (in press). Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecology Letters doi:10.1111/j.1461–0248.2010.01461.x

  • Isaac, N. J. B., Jones, K. E., Gittleman, J. L., & Purvis, A. (2005). Correlates of species richness in mammals: body size, life history, and ecology. American Naturalist, 165, 600–607.

    Article  PubMed  Google Scholar 

  • Isler, K., & van Schaik, C. P. (2006). Metabolic costs of brain size evolution. Biology Letters, 2, 557–560.

    Article  PubMed  Google Scholar 

  • Janson, C. H. (1984). Female choice and mating system of the brown capuchin monkey Cebus apella (Primates: Cebidae). Zeitschrift für Tierpsychologie, 65, 177–200.

    Google Scholar 

  • Janson, C. H., & Chapman, C. A. (1999). Resources and primate community structure. In J. G. Fleagle, C. H. Janson, & K. E. Reed (Eds.), Primate communities (pp. 237–267). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, K. E., Bielby, J., Cardillo, M., Fritz, S. A., O’Dell, J. O., Orme, C. D. L., et al. (2009). PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology, 90, 2648.

    Article  Google Scholar 

  • Knox, C. M., & Wright, P. G. (1989). Thermoregulation and energy metabolism in the lesser bushbaby, Galago senegalensis moholi. South African Journal of Zoology, 24, 89–94.

    Google Scholar 

  • Konarzewski, M., & Diamond, J. (1995). Evolution of basal metabolic rate and organ masses in laboratory mice. Evolution, 49, 1239–1248.

    Article  Google Scholar 

  • Kurland, J. A., & Pearson, J. D. (1986). Ecological significance of hypometabolism in nonhuman primates: allometry, adaptation, and deviant diets. American Journal of Physical Anthropology, 71, 445–457.

    Article  CAS  PubMed  Google Scholar 

  • Lee, P. C., & Hauser, M. D. (1998). Long-term consequences of changes in territory quality on feeding and reproductive strategies of vervet monkeys. Journal of Animal Ecology, 67, 347–358.

    Article  Google Scholar 

  • Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and hominid evolution. American Journal of Physical Anthropology, 102, 265–281.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, W. R., Galloway, V. A., & Ivakine, E. (1997). Underestimation of daily energy expenditure with the factorial methods: implications for anthropological research. American Journal of Physical Anthropology, 103, 443–454.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, W. R., Sorenson, M. V., Galloway, V. A., Spencer, G. J., Mosher, M. J., Osipova, L., et al. (2002). Climatic influences on basal metabolic rates among circumpolar populations. American Journal of Human Biology, 14, 609–620.

    Article  PubMed  Google Scholar 

  • Lovegrove, B. G. (2000). The zoogeography of mammalian basal metabolic rate. American Naturalist, 156, 201–219.

    Article  PubMed  Google Scholar 

  • Lovegrove, B. G. (2003). The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology [B], 173, 87–112.

    CAS  Google Scholar 

  • Marquet, P. A., Navarrete, S. A., & Castilla, J. C. (1990). Scaling population density to body mass in rocky intertigal communities. Science, 250, 1125–1127.

    Article  CAS  PubMed  Google Scholar 

  • Marquet, P. A., Navarrete, S. A., & Castilla, J. C. (1995). Population density, and the energetic equivalence rule. Journal of Animal Ecology, 64, 325–332.

    Article  Google Scholar 

  • Marshall, A. J., & Leighton, M. (2006). How does food availability limit the population density of white-bearded gibbons. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates: Physical and behavioral aspects (pp. 311–333). Cambridge: Cambridge University Press.

    Google Scholar 

  • McNab, B. K. (1978). Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on an ubiquitous food supply. In G. G. Montgomery (Ed.), The ecology of arboreal folivores (pp. 153–162). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • McNab, B. K. (2000). The standard energetics of mammalian carnivores: Felidae and Hyaenidae. Canadian Journal of Zoology, 78, 2227–2239.

    Article  Google Scholar 

  • McNab, B. K. (2002). The physiological ecology of vertebrates: A view from energetics. Ithaca: Cornell University Press.

    Google Scholar 

  • McNab, B. K. (2007). The evolution of energetics in birds and mammals. University of California Publications in Zoology, 137, 67–110.

    Google Scholar 

  • McNab, B. K., & Morrison, P. (1963). Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecological Monographs, 33, 63–82.

    Article  Google Scholar 

  • Mendes Pontes, A. R. (1999). Environmental determinants of primate abundance in Maraca Island, Romaima, Brazilian Amazonia. Journal of Zoology, 247, 189–199.

    Google Scholar 

  • Milton, K. (1982). Dietary quality and populations regulation in a howler monkey population. In E. G. Leigh, A. S. Rand, & D. M. Windsor (Eds.), The ecology of a tropical forest: Seasonal rhythms and long-term changes (pp. 273–290). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Milton, K., & May, M. L. (1976). Body weight, diet and home range area in primates. Nature, 259, 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Milton, K., Casey, T. M., & Casey, K. K. (1979). The basal metabolism of mantled howler monkeys (Alouatta palliata). Journal of Mammalogy, 60, 373–376.

    Article  Google Scholar 

  • Mitani, M. (1989). Cercocebus torquatus: adaptive feeding and ranging behaviors related to seasonal fluctuations of food resources in the tropical rain forest of south-western Cameroon. Primates, 30, 307–323.

    Article  Google Scholar 

  • Muchlinski, M. N. (2010). Ecological correlates of infraorbital foramen area in primates. American Journal of Physical Anthropology, 141, 131–141.

    PubMed  Google Scholar 

  • Mueller, P., & Diamond, J. (2001). Metabolic rate and environmental productivity: well-provisioned animals evolved to run and idle fast. Proceedings of the National Academy of Sciences of the USA, 98, 12550–12554.

    Article  CAS  PubMed  Google Scholar 

  • Muller, E. F. (1979). Energy metabolism, thermoregulation and water budget in the slow loris (Nycticebus coucang, Boddaert 1785). Comparative Biochemistry and Physiology Part A, 64, 109–119.

    Google Scholar 

  • Muller, E. F., & Jaksche, H. (1980). Thermoregulation, oxygen consumption, heart rate and evaporative water loss in the thick-tailed bushbaby (Galago crassicaudatus Geoffroy, 1812). Zeitschrift für Saügertierkunde, 45, 269–278.

    Google Scholar 

  • Muller, E. F., Kamau, J. M. Z., & Maloiy, G. M. O. (1983). A comparative study of basal metabolism and thermoregulation in a folivorous (Colobus guereza) and an omnivorous (Cercopithecus mitis) primate species. Comparative Biochemistry and Physiology Part A, 74, 319–322.

    CAS  Google Scholar 

  • Nagy, K. A., & Milton, K. (1979). Energy metabolism and food consumption by wild howler monkeys (Alouatta palliata). Ecology, 60, 475–480.

    Article  Google Scholar 

  • Nee, S., Read, A. F., Greenwood, J. J. D., & Harvey, P. H. (1991). The relationship between abundance and body size in British birds. Nature, 351, 312–313.

    Article  Google Scholar 

  • Oates, J. F., Whitesides, G. H., Davies, A. G., Waterman, P. G., Green, S. M., Dasilba, G. L., et al. (1990). Determinants of variation in tropical forest primate biomass: new evidence from West Africa. Ecology, 71, 328–343.

    Article  Google Scholar 

  • Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.

    Article  CAS  PubMed  Google Scholar 

  • Peres, C. A. (1997). Effects of habitat quality and hunting pressure on arboreal folivore density in Neotropical forests: a case study of howler monkeys (Alouatta spp.). Folia Primatologica, 68, 199–222.

    Article  Google Scholar 

  • Plumptre, A. J., & Reynolds, V. (1994). The effect of selective logging on the primate populations in the Budongo Forest Reserve, Uganda. Journal of Applied Ecology, 31, 631–641.

    Article  Google Scholar 

  • Proppe, D. W., & Gale, C. C. (1970). Endocrine thermoregulatory responses to local hypothalamic warming in unanesthetized baboons. American Journal of Physiology, 219, 202–207.

    CAS  PubMed  Google Scholar 

  • Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000). Predicting extinction risk in declining species. Proceedings of the Royal Society of London, Series B: Biological Sciences, 267, 1947–1952.

    Article  CAS  Google Scholar 

  • R Development Core Team. (2009). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, ISBN 3–900051–07–0, http://www.R-project.org.

  • Raichlen, D. A., Gordon, A. D., Muchlinski, M. N., & Snodgrass, J. J. (2010). Causes and significance of variation in mammalian basal metabolism. Journal of Comparative Physiology [B], 180, 301–311.

    Google Scholar 

  • Ricklefs, R. E., Konarzewski, M., & Daan, S. (1996). The relationship between basal metabolic rate and daily energy expenditure in birds and mammals. American Naturalist, 147, 1047–1071.

    Article  Google Scholar 

  • Rode, K. D., Chapman, C. A., McDowell, L. R., & Stickler, C. (2006). Nutritional correlates of population density across habitats and logging intensities in redtail monkeys (Cercopithecus ascanius). Biotropica, 38, 625–634.

    Article  Google Scholar 

  • Rohlf, F. J. (2001). Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution, 55, 2143–2160.

    CAS  PubMed  Google Scholar 

  • Russo, S. E., Robinson, S. K., & Terbogh, J. (2003). Size-abundance relationships in an Amazonian bird community: implications for the energy equivalence rule. American Naturalist, 161, 267–283.

    Article  PubMed  Google Scholar 

  • Savage, V. M., Gillooly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, B. J., et al. (2004). The predominance of quarter-power scaling in biology. Functional Ecology, 18, 257–282.

    Article  Google Scholar 

  • Schmid, J., & Speakman, J. R. (2000). Daily energy expenditure of the grey mouse lemur (Microcebus murinus): a small primate that uses torpor. Journal of Comparative Physiology [B], 170, 633–641.

    CAS  Google Scholar 

  • Schmidt-Nielsen, K. (1997). Animal physiology (5th ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Scholander, P. F., Hock, R., Walters, V., & Irving, L. (1950). Adaptation to cold in arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biological Bulletin, 99, 259–271.

    Article  CAS  PubMed  Google Scholar 

  • Sieg, A. E., O’Connor, M. P., McNair, J. N., Grant, B. W., Agosta, S. J., & Dunham, A. E. (2009). Mammalian metabolic allometry: do intraspecific variation, phylogeny, and regression models matter? American Naturalist, 174, 720–733.

    Article  PubMed  Google Scholar 

  • Smith, R. J., & Jungers, W. L. (1997). Body mass in comparative primatology. Journal of Human Evolution, 32, 523–559.

    Article  CAS  PubMed  Google Scholar 

  • Snodgrass, J. J., Leonard, W. R., Tarskaia, L. A., Alekseev, V. P., & Krivoshapkin, V. G. (2005). Basal metabolic rate in the Yakut (Sakha) of Siberia. American Journal of Human Biology, 17, 155–172.

    Article  PubMed  Google Scholar 

  • Snodgrass, J. J., Leonard, W. R., & Robertson, M. L. (2007). Primate bioenergetics: An evolutionary perspective. In M. J. Ra vosa & M. Dagosto (Eds.), Primate origins: Adaptations and evolution (pp. 703–737). New York: Springer.

    Chapter  Google Scholar 

  • Struhsaker, T. T. (1973). A recensus of vervet monkeys in the Masai-Amboseli Game Reserve, Kenya. Ecology, 54, 930–932.

    Article  Google Scholar 

  • Swanson, D. L., & Liknes, E. T. (2006). A comparative analysis of thermogenic capacity and cold tolerance in small birds. Journal of Experimental Biology, 209, 466–474.

    Article  PubMed  Google Scholar 

  • Terborgh, J. W., & van Schaik, C. P. (1987). Convergence vs. nonconvergence in primate communities. In J. H. R. Gee & P. S. Giller (Eds.), Organization of communities, past and present (pp. 205–226). Oxford: Blackwell Scientific.

    Google Scholar 

  • Wang, Z., O’Connor, T. P., Heshka, S., & Heymsfield, S. B. (2001). The reconstruction of Kleiber’s law at the organ-tissue level. Journal of Nutrition, 131, 2967–2970.

    CAS  PubMed  Google Scholar 

  • Waterman, P. G., Ross, J. A. M., Bennet, E. L., & Davies, A. G. (1988). A comparison of the floristics and leaf chemistry of the tree flora in two laysian rain forest and the influence of leaf chemistry on populations of colobine monkeys in the Old World. Biological Journal of the Linnaean Society of London, 34, 1–32.

    Article  Google Scholar 

  • West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122–126.

    Article  CAS  PubMed  Google Scholar 

  • White, C. R., & Seymour, R. S. (2003). Mammalian basal metabolic rate is proportional to body mass2/3. Proceedings of the National Academy of Sciences of the USA, 100, 4046–4049.

    Article  CAS  PubMed  Google Scholar 

  • White, C. R., & Seymour, R. S. (2004). Does basal metabolic rate contain a useful signal? Mammalian BMR allometry and correlations with a selection of physiological, ecological, and life-history variables. Physiological and Biochemical Zoology, 77, 929–941.

    Article  PubMed  Google Scholar 

  • White, C. R., Ernest, S. K. M., Kerkhoff, A. J., & Enquist, B. J. (2007a). Relationships between body size and abundance in ecology. TREE, 22, 323–330.

    Google Scholar 

  • White, C. R., Cassey, P., & Blackburn, T. M. (2007b). Allometric exponents do not support a universal metabolic allometry. Ecology, 88, 315–323.

    Article  Google Scholar 

  • White, C. R., Blackburn, T. M., & Seymour, R. S. (2009). Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter-power scaling. Evolution, 63, 2658–2667.

    Article  PubMed  Google Scholar 

  • Whiten, A., Byrne, R. W., & Henzi, S. P. (1987). The behavioral ecology of mountain baboons. International Journal of Primatology, 8, 367–388.

    Article  Google Scholar 

  • Yoshihiro, S., Ohtake, M., Matsubara, H., Zamma, K., Han’ya, G., Tanimura, Y., et al. (1999). Vertical distribution of wild Yakushima macaques (Macaca fuscata yakui) in the western area of Yakushima Island, Japan: preliminary report. Primates, 40, 409–415.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Adam Foster, Paul Garber, and 3 anonymous reviewers for helpful discussions and comments on this manuscript. Comments and suggestions from Joanna Setchell and 2 anonymous reviewers greatly improved the manuscript. W. Sechrest thanks the University of Virginia for research support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Raichlen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raichlen, D.A., Gordon, A.D. & Sechrest, W. Bioenergetic Constraints on Primate Abundance. Int J Primatol 32, 118–133 (2011). https://doi.org/10.1007/s10764-010-9442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-010-9442-2

Keywords

Navigation