International Journal of Primatology

, Volume 31, Issue 4, pp 585–607 | Cite as

Orangutan Energetics and the Influence of Fruit Availability in the Nonmasting Peat-swamp Forest of Sabangau, Indonesian Borneo

  • Mark E. Harrison
  • Helen C. Morrogh-Bernard
  • David J. Chivers


Data on energy intake and the effects of fluctuations in fruit availability on energy intake for African apes, and orangutans in mast-fruiting habitats, indicate that orangutans may face greater energetic challenges than do their African counterparts. Comparable data on orangutans in nonmasting forests, which experience lower fluctuations in fruit availability, have been lacking, however, complicating interpretations. We conducted a 46-mo study of orangutan energetics in the nonmasting Sabangau peat-swamp forest, Indonesian Borneo. Sabangau orangutans experienced periods of negative energy balance apparently even longer than in mast-fruiting habitats, as indicated by comparisons of observed energy intake with theoretical requirements and analysis of urinary ketones. Daily energy intake was positively related to fruit availability in flanged males, but not in adult females or unflanged males. This may represent different foraging strategies between age-sex classes and suggests that fruit availability is not always an accurate indicator of ape energy intake/balance. Urinary ketone levels were not generally related to fruit availability, daily energy intake, day range, or party size. This is probably due to low energy intake, and consequently high ketone production, throughout much of the study period. Comparisons with published results on African apes support the hypothesis that orangutans are unique among hominoids in regularly experiencing prolonged periods of negative energy balance. This has important effects on orangutan behavior and socioecology, and has likely been a key factor driving the evolutionary divergence of orangutans and African apes.


energy ketones masting orangutan peat-swamp forest 


  1. Abbott, W. G. H., Howard, B. V., Christin, L., Freymond, D., Lillioja, S., Boyce, V. L., et al. (1988). Short-term energy balance: relationship with protein, carbohydrate, and fat balances. American Journal of Physiology, 255, E332–E337.PubMedGoogle Scholar
  2. Altmann, J. (1974). Observational study of behaviour: sampling methods. Behaviour, 49, 227–265.CrossRefPubMedGoogle Scholar
  3. Altmann, J. (1983). Costs of reproduction in baboons (Papio cynocephalus). In W. P. Aspey & S. I. Lustik (Eds.), Behavioral energetics: The cost of survival in vertebrates (pp. 67–88). Columbus: Ohio State University Press.Google Scholar
  4. Altmann, J., & Samuels, A. (1992). Costs of maternal care: infant-carrying in baboons. Behavioral Ecology and Sociobiology, 29, 391–398.CrossRefGoogle Scholar
  5. Andrews, P. (1996). Palaeoecology and hominoid palaeoenvironments. Biological Reviews of the Cambridge Philosophical Society, 71, 257–300.CrossRefGoogle Scholar
  6. Bharatu, S., Pal, M., Bhattacharya, B. N., & Bharati, P. (2007). Prevalence and causes of chronic energy deficiency and obesity in Indian women. Human Biology, 79, 395–412.CrossRefGoogle Scholar
  7. Blanc, S., Scheller, D., Kemnitz, J., Weindruch, R., Colman, R., Newton, W., et al. (2003). Energy expenditure of rhesus monkeys subjected to 11 years of dietary restriction. The Journal of Clinical Endocrinology and Metabolism, 88, 16–23.CrossRefPubMedGoogle Scholar
  8. BSN. (1992). Cara Uji Makanan dan Minuman [Methods for testing foods and drinks]. Jakarta: Badan Standardisasi Nasional.Google Scholar
  9. Cannon, C. H., Curran, L. M., Marshall, A. J., & Leighton, M. (2007). Long-term reproductive behaviour of woody plants across seven Bornean forest types in the Gunung Palung National Park (Indonesia): suprannual synchrony, temporal productivity and fruiting diversity. Ecological Letters, 10, 956–969.CrossRefGoogle Scholar
  10. Chapman, C. A., Chapman, L. J., Rode, K. D., Hauck, E. M., & McDowell, L. R. (2003). Variation in the nutritional value of primate foods: Among trees, time periods, and areas. International Journal of Primatology, 24, 317–333.CrossRefGoogle Scholar
  11. Cocks, L. (2007). Factors influencing the well-being and longevity of captive female orangutans. International Journal of Primatology, 28, 429–440. doi:10.1007/s10764-007-9117-9.CrossRefGoogle Scholar
  12. Coehlo, A. M. (1986). Time and energy budgets. In A. R. Liss (Ed.), Comparative primate biology (pp. 141–66). New York: Alan R. Liss.Google Scholar
  13. Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., et al. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325, 201–204.CrossRefPubMedGoogle Scholar
  14. Conklin, N. L., & Wrangham, R. W. (1994). The value of figs to a hind-gut fermenting frugivore: a nutritional analysis. Biochemical Systematics and Ecology, 22, 137–151.CrossRefGoogle Scholar
  15. Conklin-Brittain, N. L., Knott, C. D., & Wrangham, R. W. (2006). Energy intake by wild chimpanzees and orangutans: Methodological considerations and a preliminary comparison. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates. Ecological, physical and behavioral aspects (pp. 445–471). Cambridge: Cambridge University Press.Google Scholar
  16. de Bonis, L., & Koufos, G. D. (1993). The face and the mandible of Ouranopithecus macedoniensis: description of new specimens and comparisons. Journal of Human Evolution, 24, 469–491.CrossRefGoogle Scholar
  17. Deschner, T., Kratzsch, J., & Hohmann, G. (2008). Urinary C-peptide as a method for monitoring body mass changes in captive bonobos (Pan paniscus). Hormones and Behavior, 54, 620-626. doi:10.1016/j.yhbeh.2008.06.005.
  18. Durnin, J. V. G. A. (1979). Energy balance in man with particular reference to low energy intakes. Nutritio et Dieta, 27, 1–10.Google Scholar
  19. Durnin, J. V. G. A., Edholm, O. G., Miller, D. S., & Waterlow, J. C. (1973). How much food does man require? Nature, 242, 418.CrossRefPubMedGoogle Scholar
  20. Edmundson, W. (1980). Adaptation to undernutrition: how much food does man need? Social Science & Medicine, 14D, 119–126.Google Scholar
  21. Emery Thompson, M., & Knott, C. D. (2008). Urinary C-peptide of insulin as a non-invasive marker of energy balance in wild orangutans. Hormones and Behavior, 53, 526–535.CrossRefPubMedGoogle Scholar
  22. Garrow, J. S., & Webster, J. D. (1984). Thermogenesis to small stimuli. In A. J. M. Van Ess (Ed.), Human energy metabolism (pp. 215–224). Wageningen: European Community Concerted Action on Nutrition and Health (EURONUT) Report 5.Google Scholar
  23. Goering, H. K., & van Soest, P. J. (1970). Forage fiber analysis. In H. K. Goering (Ed.), Agricultural Handbook. Number 379. Washington, DC: United States Department of Agriculture, Agricultural Research Service.Google Scholar
  24. Hannibal, D. L., & Guatelli-Steinberg, D. (2005). Linear enamel hypoplasia in the great apes: analysis by genus and locality. American Journal of Physical Anthropology, 127, 13–25.CrossRefPubMedGoogle Scholar
  25. Harrison, M. E. (2009). Orang-utan feeding behaviour in Sabangau, Central Kalimantan. PhD thesis, University of Cambridge, Cambridge.Google Scholar
  26. Harrison, M. E., & Chivers, D. J. (2007). The orang-utan mating system and the unflanged male: a product of declining food availability during the late Miocene and Pliocene? Journal of Human Evolution, 52, 275–293.CrossRefPubMedGoogle Scholar
  27. Harrison, M. E., Vogel, E. R., Morrogh-Bernard, H., & van Noordwijk, M. A. (2009). Methods for calculating activity budgets compared: a case study using orangutans. American Journal of Primatology, 71, 353–358.CrossRefPubMedGoogle Scholar
  28. Holloszya, J. O., & Fontana, L. (2007). Caloric restriction in humans. Experimental Gerontology, 42, 709–712.CrossRefGoogle Scholar
  29. Kelly, T. R., Sleeman, J. M., & Wrangham, R. W. (2004). Urinalysis in free-living chimpanzees (Pan troglodytes schweinfurthii) in Uganda. The Veterinary Record, 154, 729–730.PubMedGoogle Scholar
  30. Key, C., & Ross, C. (1999). Sex differences in energy expenditure in non-human primates. Proceedings of the Royal Society of London. Series B, 266, 2479–2485.CrossRefPubMedGoogle Scholar
  31. Knott, C. D. (1998). Changes in orangutan caloric intake, energy balance, and ketones in response to fluctuating fruit availability. International Journal of Primatology, 19, 1061–1079.CrossRefGoogle Scholar
  32. Knott, C. D. (1999). Reproductive, physiological and behavioural responses of orangutans in Borneo to fluctuations in food availability. PhD thesis, Harvard University, Cambridge, MA.Google Scholar
  33. Knott, C. D. (2001). Female reproductive ecology of the apes: Implications for human evolution. In P. T. Ellison (Ed.), Reproductive ecology and human evolution (pp. 429–463). New York: Walter de Gruyter.Google Scholar
  34. Knott, C. D. (2005). Energetic responses to food availability in the great apes: Implications for hominin evolution. In D. Brockman & C. P. van Schaik (Eds.), Primate seasonality: Implications for human evolution (pp. 351–378). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  35. Kurpad, A. V., Muthayya, S., & Vaz, M. (2005). Consequences of inadequate food energy and negative energy balance in humans. Public Health Nutrition, 8, 1053–1076.CrossRefPubMedGoogle Scholar
  36. Leibel, R. L., Rosenbaum, M., & Hirsch, J. (1995). Changes in energy expenditure resulting from altered body weight. The New England Journal of Medicine, 332, 621–628.CrossRefPubMedGoogle Scholar
  37. Leighton, M. (1993). Modelling dietary selectivity by Bornean orangutans: evidence of multiple criteria in fruit selection. International Journal of Primatology, 14, 257–313.CrossRefGoogle Scholar
  38. Leonard, W. R., & Robertson, M. L. (1997). Comparative primate energetics and evolution. American Journal of Physical Anthropology, 102, 265–281.CrossRefPubMedGoogle Scholar
  39. Levine, J. A., Schleusner, S. J., & Jensen, M. D. (2000). Energy expenditure of nonexercise activity. The American Journal of Clinical Nutrition, 72, 1451–1454.PubMedGoogle Scholar
  40. Manduell, K. (2008). Locomotor behaviour of wild orangutans (P. p. wurmbii) in disturbed peat swamp forest, Sabangau, Central Kalimantan, Indonesia. MRes thesis, Manchester Metropolitan University, Manchester, UK.Google Scholar
  41. Markham, R., & Groves, C. P. (1990). Brief communication: weights of wild orang-utans. American Journal of Physical Anthropology, 81, 1–3.CrossRefPubMedGoogle Scholar
  42. Marshall, A. J., & Wrangham, R. W. (2007). Evolutionary consequences of fallback foods. International Journal of Primatology, 28, 1219–1235.CrossRefGoogle Scholar
  43. Marshall, A. J., Ancrenaz, M., Brearley, F. Q., Fredriksson, G. M., Ghaffar, N., Heydon, M., et al. (2009). The effects of forest phenology and floristics on populations of Bornean and Sumatran orangutans: Are Sumatran forests better orangutan habitat than Bornean forests? In S. A. Wich, S. S. Utami Atmoko, T. Mitra Setia, & C. P. van Schaik (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 97–116). Oxford: Oxford University Press.Google Scholar
  44. Masi, S. (2008). Seasonal influence on foraging strategies, activity and energy budgets of western lowland gorillas (Gorilla gorilla gorilla) in Bai Hokou, Central African Republic. PhD thesis, University of Rome La Sapienza, Rome, Italy.Google Scholar
  45. Milton, K., & Demment, M. W. (1988). Digestion and passage kinetics of chimpanzees fed high and low fibre diets and comparisons with human data. The Journal of Nutrition, 118, 1082–1088.PubMedGoogle Scholar
  46. Morrogh-Bernard, H. (2009). Orang-utan behavioural ecology in the Sabangau Peat-Swamp Forest, Borneo. PhD thesis, University of Cambridge, Cambridge.Google Scholar
  47. Morrogh-Bernard, H., Husson, S., & McLardy, C. (2002). Orang-utan data collection standardisation. Designed during Orang-utan Culture Workshop, February 2002, San Anselmo, CA.Google Scholar
  48. Morrogh-Bernard, H., Husson, S., Page, S. E., & Rieley, J. O. (2003). Population status of the Bornean orang-utan (Pongo pygmaeus) in the Sebangau peat swamp forest, Central Kalimantan, Indonesia. Biological Conservation, 110, 141–152.CrossRefGoogle Scholar
  49. Morrogh-Bernard, H. C., Husson, S. J., Knott, C. D., Wich, S. A., van Schaik, C. P., van Noordwijk, M. A., et al. (2009). Orangutan activity budgets and diet: A comparison between species, populations and habitats. In S. A. Wich, S. S. Utami Atmoko, T. Mitra Setia, & C. P. van Schaik (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 119–133). Oxford: Oxford University Press.Google Scholar
  50. NAS/National Academy of Sciences (2005). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. Washington, DC, Food and Nutrition Board of the Institute of Medicine of the National Academies, National Academies Press.Google Scholar
  51. Nieburg, P., Person-Karell, B., & Toole, M. J. (1992). Malnutrition-mortality relationships among refugees. Journal of Refugee Studies, 5, 247–256.CrossRefGoogle Scholar
  52. Nkurunungi, J. B., Ganas, J., Robbins, M. M., & Stanford, C. B. (2004). A comparison of two mountain gorilla habitats in Bwindi Impenetrable National Park, Uganda. African Journal of Ecology, 42, 289–297.CrossRefGoogle Scholar
  53. NRC. (2003). Nutrient requirements of nonhuman primates (2nd ed.). Washington: The National Research Council. The National Academies Press.Google Scholar
  54. Oyarzun, S. E., Crawshaw, G. J., & Vaides, E. V. (1996). Nutrition of the tamandua: I. Nutrient composition of termites (Nasutitermes spp.) and stomach contents from wild tamanduas (Tamandua tetradactyla). Zoo Biology, 15, 509–524.CrossRefGoogle Scholar
  55. Page, S. E., Rieley, J. O., Shotyk, Ø. W., & Weiss, D. (1999). Interdependence of peat and vegetation in a tropical peat swamp forest. Philosophical Transactions of the Royal Society of London. B, 354, 1885–1897.CrossRefGoogle Scholar
  56. Pierce, W. C., & Haenish, E. L. (1947). Quantitative analysis. London: Wiley.Google Scholar
  57. Pontzer, H., & Wrangham, R. W. (2004). Climbing and the daily energy cost of locomotion in wild chimpanzees: implications for hominoid locomotor evolution. Journal of Human Evolution, 46, 317–335.CrossRefPubMedGoogle Scholar
  58. Potts, K. B. (2008). Habitat heterogeneity on multiple spatial scales in Kibale National Park, Uganda: Implications for chimpanzee population ecology and grouping patterns. PhD thesis, Yale University, New Haven, CT.Google Scholar
  59. Remis, M. J. (2002). Food preferences among captive Western gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes). International Journal of Primatology, 23, 231–249.CrossRefGoogle Scholar
  60. Remis, M. J. (2003). Are gorillas vacuum cleaners of the forest floor? The roles of body size, habitat, and food preferences on dietary flexibility and nutrition. In A. B. Taylor & M. L. Goldsmith (Eds.), Gorilla biology: A multidisciplinary perspective (pp. 385–404). Cambridge: Cambridge University Press.Google Scholar
  61. Robertson, J. B., & van Soest, P. J. (1980). The detergent system of analysis and its application to human foods. In W. P. T. James & O. Theander (Eds.), The analysis of dietary fiber in food (pp. 123–158). New York: Marcel Decker.Google Scholar
  62. Robinson, A. M. (1980). Physiological role of ketone bodies as substrates and signals in mammalian tissues. Physiological Reviews, 60, 143.PubMedGoogle Scholar
  63. Rothman, J. M., Dierenfeld, E. S., Hintz, H. F., & Pell, A. N. (2008). Nutritional quality of gorilla diets: Consequences of age, sex, and season. Oecologia, 155, 111–122.CrossRefPubMedGoogle Scholar
  64. Schmidt, D. A., Kerley, M. S., Dempsey, J. L., Porton, I. J., Porter, J. H., Griffin, M. E., et al. (2005). Fiber digestibility by the orangutan (Pongo abelii) in vitro and in vivo. Journal of Zoo and Wildlife Medicine, 36, 571–580.CrossRefPubMedGoogle Scholar
  65. Schofield, S., & Lambert, C. M. (1975). Village nutrition studies: An annotated bibliography. University of Sussex: Institute of Development Studies.Google Scholar
  66. Scott, M. L. (1986). Energy requirements, sources, and metabolism. In: Nutrition in humans and selected animal species (pp. 12–78). New York: Wiley.Google Scholar
  67. Sherry, D. S., & Ellison, P. T. (2007). Potential applications of urinary C-peptide of insulin for comparative energetics research. American Journal of Physical Anthropology, 133, 771–778. doi:10.1002/ajpa.20562.CrossRefPubMedGoogle Scholar
  68. Shetty, P. S. (1993). Chronic undernutrition and metabolic adaptation. The Proceedings of the Nutrition Society, 52, 267–284.CrossRefPubMedGoogle Scholar
  69. Shetty, P. (2005). Energy requirements of adults. Public Health Nutrition, 8, 994–1009. doi:10.1079/PHN2005792.PubMedGoogle Scholar
  70. Thorpe, S. K. S., & Crompton, R. H. (2009). Orangutan positional behavior: Interspecific variation and ecological correlates. In S. A. Wich, S. S. Utami Atmoko, T. Mitra Setia, & C. P. van Schaik (Eds.), Orangutans: Geographic variation in behavioral ecology and conservation (pp. 33–47). Oxford: Oxford University Press.Google Scholar
  71. Thorpe, S. K. S., Crompton, R. H. & Alexander, R. M. (2007). Orangutans use compliant branches to lower the energetic cost of locomotion. Biology Letters, 3, 253-256. doi:10.1098/rsbl.2007.0049.
  72. van Schaik, C. P. (1996). Strangling figs: Their role in the forest. In C. P. van Schaik & J. Supriatna (Eds.), Leuser: A Sumatran sanctuary (pp. 111–119). Jakarta: Perdana Ciptamadri.Google Scholar
  73. van Schaik, C. P. (1999). The socioecology of fission-fusion sociality in orangutans. Primates, 40, 69–86.CrossRefGoogle Scholar
  74. van Schaik, C. P., & Pfannes, K. R. (2005). Tropical climates and phenology: a primate perspective. In D. K. Brockman & C. P. van Schaik (Eds.), Seasonality in primates: Studies of living and extinct human and nonhuman primates (pp. 23–54). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  75. van Soest, P. J. (1994). Nutritional ecology of the ruminant (2nd ed.). Ithaca: Comstock Publishing Associates.Google Scholar
  76. Vogel, E. R., van Woerden, J. T., Lucas, P. W., Utami Atmoko, S. S., van Schaik, C. P., & Dominy, N. J. (2008). Functional ecology and evolution of hominoid molar enamel thickness: Pan troglodytes schweinfurthii and Pongo pygmaeus wurmbii. Journal of Human Evolution, 55, 60–74.CrossRefPubMedGoogle Scholar
  77. Waterlow, J. C. (1986). Metabolic adaptation to low intakes of energy and protein. Annual Review of Nutrition, 6, 495–526.CrossRefPubMedGoogle Scholar
  78. WFP. (2007). World Hunger Series 2007: Hunger and health. Rome, Italy: World Food Programme.Google Scholar
  79. Wheatley, B. P. (1982). Energetics of foraging in Macaca fascicularis and Pongo pygmaeus and a selective advantage of large body size in the orangutan. Primates, 23, 348–363.CrossRefGoogle Scholar
  80. Wheatley, B. P. (1987). The evolution of large body size in orangutans: a model for hominoid divergence. American Journal of Primatology, 13, 313–324.CrossRefGoogle Scholar
  81. Wich, S. A., Geurts, M. L., Mitra Setia, T., & Utami-Atmoko, S. S. (2006). Influence of fruit availability on Sumatran orangutan sociality and reproduction. In G. Hohmann, M. M. Robbins, & C. Boesch (Eds.), Feeding ecology in apes and other primates. Ecological, physical and behavioral aspects (pp. 335–356). Cambridge: Cambridge University Press.Google Scholar
  82. Wich, S. A., Utami-Atmoko, S. S., Mitra Setia, T., Djojosudharmo, S., & Geurts, M. L. (2006). Dietary and energetic responses of Pongo abelii to fruit availability fluctuations. International Journal of Primatology, 27, 1535–1550.CrossRefGoogle Scholar
  83. Wich, S. A., Meijaard, E., Marshall, A. J., Husson, S., Ancrenaz, M., Lacy, R. C., et al. (2008). Distribution and conservation status of the orangutan (Pongo spp.) on Borneo and Sumatra: how many remain? Oryx, 42, 329–339.CrossRefGoogle Scholar
  84. Wrangham, R. W., Conklin-Brittain, N. L., & Hunt, K. D. (1998). Dietary responses of chimpanzees and cercopithecines to seasonal variation in fruit abundance. I. Antifeedants. International Journal of Primatology, 19, 949–970.CrossRefGoogle Scholar
  85. Young, H., & Jaspars, S. (1995). Nutrition, disease and death in times of famine. Disasters, 19, 94–109.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mark E. Harrison
    • 1
    • 2
  • Helen C. Morrogh-Bernard
    • 1
    • 2
  • David J. Chivers
    • 1
  1. 1.Wildlife Research Group, The Anatomy SchoolUniversity of CambridgeCambridgeUK
  2. 2.Orangutan Tropical Peatland Project, Centre for the International Cooperation in Management of Tropical PeatlandsUniversity of Palangka RayaPalangka RayaIndonesia

Personalised recommendations